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Polyhedra? Example: Tiles



How many of you read “Design Pattern”?   → 

Polyhedra? Example: Tiles



Tiles Everywhere

1. Hardware

Example: Google Cloud TPU

Architectural Scalability With Tiling



Tiles Everywhere

1. Hardware
Google Edge TPU

Edge computing zoo



Tiles Everywhere

1. Hardware
2. Data Layout

Example: XLA compiler, Tiled data layout

Repeated/Hierarchical Tiling
e.g., BF16 (bfloat16)
on Cloud TPU
(should be 8x128 then 2x1)



Tiles Everywhere

1. Hardware
2. Data Layout
3. Control Flow
4. Data Flow
5. Data Parallelism

Example: Halide for image processing pipelines
https://halide-lang.org

Meta-programming API and domain-specific language (DSL) for loop transformations, numerical computing kernels

Tiling in Halide

Tiled schedule:
  strip-mine (a.k.a. split)
  permute (a.k.a. reorder)

Vectorized schedule:
  strip-mine
  vectorize inner loop

Non-divisible bounds/extent:
  strip-mine
  shift left/up
  redundant computation
  (also forward substitute/inline operand)

https://halide-lang.org


Tiles Everywhere

1. Hardware
2. Data Layout
3. Control Flow
4. Data Flow
5. Data Parallelism

Example: Halide for image processing pipelines
https://halide-lang.org

And also TVM for neural networks
https://tvm.ai

TVM example: scan cell (RNN)

m = tvm.var("m")
n = tvm.var("n")
X = tvm.placeholder((m,n), name="X")
s_state = tvm.placeholder((m,n))
s_init = tvm.compute((1,n), lambda _,i: X[0,i])
s_do = tvm.compute((m,n), lambda t,i: s_state[t-1,i] + X[t,i])
s_scan = tvm.scan(s_init, s_do, s_state, inputs=[X])

s = tvm.create_schedule(s_scan.op)

// Schedule to run the scan cell on a CUDA device
block_x = tvm.thread_axis("blockIdx.x")
thread_x = tvm.thread_axis("threadIdx.x")
xo,xi = s[s_init].split(s_init.op.axis[1], factor=num_thread)
s[s_init].bind(xo, block_x)
s[s_init].bind(xi, thread_x)
xo,xi = s[s_do].split(s_do.op.axis[1], factor=num_thread)
s[s_do].bind(xo, block_x)
s[s_do].bind(xi, thread_x)
print(tvm.lower(s, [X, s_scan], simple_mode=True))

https://halide-lang.org
https://tvm.ai/
https://docs.tvm.ai/api/python/tvm.html#tvm.var
https://docs.tvm.ai/api/python/tvm.html#tvm.var
https://docs.tvm.ai/api/python/tvm.html#tvm.placeholder
https://docs.tvm.ai/api/python/tvm.html#tvm.placeholder
https://docs.tvm.ai/api/python/tvm.html#tvm.compute
https://docs.tvm.ai/api/python/tvm.html#tvm.compute
https://docs.tvm.ai/api/python/tvm.html#tvm.scan
https://docs.tvm.ai/api/python/schedule.html#tvm.create_schedule
https://docs.tvm.ai/api/python/tvm.html#tvm.thread_axis
https://docs.tvm.ai/api/python/tvm.html#tvm.thread_axis
https://docs.tvm.ai/api/python/build.html#tvm.lower


Tiling and Beyond

1. But what about symbolic bounds, sizes, shapes?
2. Other transformations: fusion, fission, pipelining, unrolling… ?
3. Composition with other transformations and mapping decisions?
4. Consistency with … ?
5. Evaluating cost functions, enforcing resource constraints?

→ Impact on compiler construction,
intermediate representations,

program analyses and transformations?



→ Polyhedral Compilation as a Design Pattern

● Tiles tend to be hyper-rectangles and occasionally 
parallelograms, trapezoids

● Compose tile patterns with fusion, fission, pipelining
and nested tile patterns

More generally: Polyhedral Compilation =
a geometric, affine, periodic view of

program transformations
along time: sequence, dependences
and space: parallelism, memory, processors



Polyhedral Compilation in a Nutshell

with Alex Zinenko
Based on “A Performance Vocabulary for Affine Loop Transformations”

by Martin Kong, Louis-Noel Pouchet; and a dozen of other papers



● Multi-level parallelism

− CPU — typically 3 levels: system threads or finer grain tasks, vectors, 
instruction-level parallelism

− GPU — 2 to 8 levels: work groups, work items, warps and vectors, 
instruction-level parallelism

and related features on other HW accelerators

● Deep memory hierarchies

− Positive effects: temporal and spatial locality, coalescing, latency hiding 
through multithreading

− Negative effects: cache conflicts, false sharing

− Many other concerns: capacity constraints, alignment, exposed pipelines

Architectural Effects to Consider



Memory Coalescing

Architectural Effects to Consider

Lines

Line



● Need a program representation to reason about individual array elements, 
individual iterations, relations among these, and with hardware resources
○ Programming languages may provide high level abstractions for nested 

loops and arrays, tensor algebra, graphics...
○ The need for performance portability leads to domain-specific approaches

E.g., for ML high-performance kernels alone:
XLA, TVM, Tensor Comprehensions, Glow, Tiramisu, etc.

● Yet few compiler intermediate representations reconcile these with
1. the ability to model hardware features
2. while capturing complex transformations
3. supporting both general-purpose domain-specific optimizers

https://www.tensorflow.org/xla/
https://tvm.ai/
https://pytorch.org/blog/tensor-comprehensions/
https://facebook.ai/developers/tools/glow
http://tiramisu-compiler.org/


Generic
Loop Nest 
Optimizer

(this is a hammer)

E.g. Intel ICC, Pluto, PPCG, LLVM/Polly



Generic
Loop Nest 
Optimizer

(these are not nails)

(this is a hammer)

Domain-Specific
Optimizer and 

Code Generator

E.g. Intel ICC, Pluto, PPCG, LLVM/Polly

E.g., XLA, Halide, Polymage



Generic
Loop Nest 
Optimizer

(these are not nails)

(this is a hammer)

Domain-Specific
Optimizer and 

Code Generator

E.g. Intel ICC, Pluto, PPCG, LLVM/Polly

E.g., XLA, Halide, Polymage

Polyhedral Framework =
semantical and algorithmic design pattern 

for multi-purpose representation, analysis, 
transformation, optimization, code generation



Polyhedral Representation Example: 2D convolution
for (int i = 0; i < H - KH; ++i)
  for (int j = 0; j < W - KW; ++j) {
    C[i][j] = 0.;
    for (int k = 0; k < KH; ++k)
      for (int l = 0; l < KW; ++l)
        C[i][j] += A[i+k][j+l] * M[k][l];
  }



for (int i = 0; i < H - KH; ++i)
  for (int j = 0; j < W - KW; ++j) {
    C[i][j] = 0.;
    for (int k = 0; k < KH; ++k)
      for (int l = 0; l < KW; ++l)
        C[i][j] += A[i+k][j+l] * M[k][l];
  }

Statement S1

Polyhedral Representation Example: 2D convolution



/* i=0 */
  for (int j = 0; j < W - KW; ++j) {
    C[0][j] = 0.;
    /*...*/
  }

/* i=1 */
  for (int j = 0; j < W - KW; ++j) {
    C[1][j] = 0.;
    /*...*/
  }
/*...*/

Polyhedral Representation Example: 2D convolution



/* i=0 */
  /* and j=0 */
    C[0][0] = 0.;
  /* and j=1 */
    C[0][1] = 0.;
  /*...*/
/* i=1 */
  /* and j=0 */
    C[1][0] = 0.;
  /*...*/

/*...*/

Polyhedral Representation Example: 2D convolution



Statement Instance
/* i=0 */
  /* and j=0 */
    C[0][0] = 0.;   // S1(0,0)
  /* and j=1 */
    C[0][1] = 0.;   // S1(0,1)
  /*...*/
/* i=1 */
  /* and j=0 */
    C[1][0] = 0.;   // S1(1,0)
  /*...*/

/*...*/

Statement instance

= specific execution of a 
statement in a loop



Iteration Domain
Iteration domain: set of all statement instances

    C[0][0] = 0.;   C[0][1] = 0.;   C[0][2] = 0.;  //...

    C[1][0] = 0.;   C[1][1] = 0.;   C[1][2] = 0.;  //…

    C[2][0] = 0.;   C[2][1] = 0.;   C[2][2] = 0.;  //…

/*...*/



Iteration Domain
Iteration domain: set of all statement instances.i

j



Iteration Domain

for (int i = 0; i < H - KH; ++i)
  for (int j = 0; j < W - KW; ++j) {
    C[i][j] = 0.;
    for (int k = 0; k < KH; ++k)
      for (int l = 0; l < KW; ++l)
S2      C[i][j] += A[i+k][j+l] * M[k][l];
  }

Iteration domain: set of all statement instances.

need to represent and operate on
“finitely presented” integer sets 
(and relations), and solve 
optimization problems:

isl http://repo.or.cz/w/isl.git
Sven Verdoolaege

  D_S2 = (H,W,KH,KW) -> 
    {S2(i,j,k,l): 0 <= i < H-KH &&
                  0 <= j < W-KW &&
                  0 <= k < KH &&
                  0 <= l < KW}

      

http://repo.or.cz/w/isl.git


Program Transformations



Tiling



Tiling



Tiling



Tiling



Tiling

May be performed as part of scheduling,
or separately from affine scheduling

if the scheduler ensures permutability



Loop Fusion and Fission
Look for a single-loop schedule respecting all dependences

Multiple fusion heuristics: min, max, “smart”, “wise”...



Affine Schedules

i

j

time



Affine Schedules

Schedules assign logical execution dates to elements of the iteration domain

We are interested* only in affine schedules, that is of the shape

t = c0 + c1 * i1 + c2 * i2 + c3 * i3 + … + k1 * W + k2 * H + k3  * KH + k4 * KW

where c0,c1,c2,...,k1,k2,k3,k4 are constants, and i1,i2,i3… are iteration variables

* We will explain later why



Multi-Dimensional Schedules

for (int i = 0; i < H - KH; ++i)
  for (int j = 0; j < W - KW; ++j)
    C[i][j] = 0.;

To obtain nested loop structure like

we need to execute the instances C[x][*] after all of C[x-1][*] + induction, but

    t = (W - KW) * i + j

does not match our affine schedule pattern



Multi-Dimensional Schedules

Solution: use multi-dimensional schedules and execute statement instances 
following the lexicographical order of their logical dates:

    (0,0) << (0,1) << (0,5672658425682435) << (1,0) << (1,1).

We can then get the original order using a two-dimensional schedule

    (i,j) → (i,j)



Affine Schedules

i

j

time



Multi-Statement Schedules

Similar problem exists: for the same i,j, we want to execute all instances of S2 
after all instances of S1

for (int i = 0; i < H - KH; ++i)
  for (int j = 0; j < W - KW; ++j) {
    C[i][j] = 0.;                              // S1
    for (int k = 0; k < KH; ++k)
      for (int l = 0; l < KW; ++l)
        C[i][j] += A[i + k][j + l] * M[k][l];  // S2
  }

Note: in this particular case, we can use (i,j,-1,-1) for S1 and (i,j,k,l) for S2 because 
the lower bound is constant, this trick no longer works for bounds that depend 
on outer iterators



Multi-Statement Schedules

General solution: introduce auxiliary scalar dimensions to the schedule to 
separate the statements thanks to the lexicographical order

    (i, j, 0, *, *) for S1;
    (i, j, 1, k, l) for S2.

Any constant can be used in place of *, or these dimensions can be omitted if we 
extend lexicographical order to vectors of different size with shorter vector 
preceding longer vectors with the same prefix



void 2mm(double alpha, double beta,
         double A[NI][NK], double B[NK][NJ],
         double C[NJ][NL], double D[NI][NL]) {
  double tmp[NI][NJ];
  for (i = 0; i < NI; i++)
    for (j = 0; j < NJ; j++) {
S1:   tmp[i][j] = 0.0;
      for (k = 0; k < NK; ++k)
S2:     tmp[i][j] += alpha * A[i][k] * B[k][j];
    }
  for (i = 0; i < NI; i++)
    for (j = 0; j < NL; j++) {
S3:   D[i][j] *= beta;
      for (k = 0; k < NJ; ++k)
S4:     D[i][j] += tmp[i][k] * C[k][j];
    }
}

S1→(0,i,0,0,j)
S2→(0,i,k,1,j)
S3→(1,i,0,0,j)
S4→(1,i,k,1,j)

> 2x faster
on 4-core CPU

permute, fuse inner

fuse outer, permute

S1→(0,i,j,1,0)
S2→(1,i,j,0,k)
S3→(0,i,j,0,0)
S4→(1,i,k,1,j)

Multi-Statement Schedules



Schedule Functions or Relations

In the simplest case, we use affine functions to assign logical execution dates, e.g

t = f(i, j, k) = i.

In some cases, we want to relax that and use relations constrained by affine 
inequalities instead.  For example, the non-affine function

t1 = g(i, j, k) = floor(i / 42)

can be transformed into an affine relation

{(i, j, k) -> (t1) : 42*t1 <= i <= 42*t1 + 41} 



Polyhedral/Affine Scheduling

● Iteratively produce affine schedule functions such that:

● dependence distances are lexicographically positive

● dependence distances are small ⇒ locality

● dependence distances are zero ⇒ parallelism

● dependences have non-negative distances along consecutive dimensions
⇒ permutability (which enables tiling)

(0,1,0,0) (0,1,-2,3) (0,0,-1,42)
valid also valid violated

Generally, dependences = RAW + WAR + WAW

permutable permutable



Polyhedral/Affine Scheduling
● Iteratively produce affine scheduling functions of shape:

minimize 

for every dependence R→S

Statement S, scheduling step k
a,b,d – coefficients
i – original loop iterators
P – symbolic parameters



Polyhedral/Affine Scheduling
● Iteratively produce affine scheduling functions of shape:

Statement S, scheduling step k
a,b,d – coefficients
i – original loop iterators
P – symbolic parameters

minimize 

for every dependence R→S use the affine form of 
the Farkas lemma to 
linearize the inequality

→ Integer Linear Programming (ILP) problem



isl Schedules Trees: Compose w/ Imperative Semantics



Code Generation (simplified)

Given iteration domains and schedules, generate the code that traverses all 
statement instances in the order defined by the schedules:

- each schedule dimension is (potentially) a loop
- compute loop bounds
- eliminate single-iteration loops and other redundant control flow
- rewrite access subscripts

See [Bastoul, 2004], [Vasilache et.al, 2006], [Grosser et.al, 2015]



Why Affine Schedules?

Code generation requires us to invert the schedule, that is express original loop 
iterators (i,j,...) in terms of new ones (t…).  For example, to rewrite A[i][j].

Please solve:
t0 = i*i*j*N + j*k;
t1 = k*j - i;

       t2 = j*k*(i-1);
in integers for i,j,k.

Hilbert’s tenth problem: devise a procedure that decides, for any Diophantine 
equation, if it has an integer solution. [Hilbert, 1900]
Demonstrated that such general procedure does not exist [Matiyasevich, 1970].



Why Affine Schedules?

Systems of affine (i.e., linear) Diophantine equations can be solved,
e.g. by Gaussian elimination

Systems of affine equations and inequalities can be solved for some optimum 
using integer linear programming (ILP) or Fourier-Motzkin elimination (FM)

Note: there may be other special cases of Diophantine equations that can be 
solved, see [Featurier, 2015], [Yuki, 2019]



Correctness Guarantees



Validity of a Loop Transformation

A code transformation is valid if the transformed code produces the same result 
as the original code.

If we restrict observable results to memory modifications, the transformed code 
must write the same data to the same addresses in the same order.



Access Functions

Each statement reads and/or writes to some addresses.

Assuming no aliasing, address = array id + subscripts.

Characterize each access by an affine function:

- arguments: loop induction variables ;
- value: vector of array subscripts.



Access Functions

Iteration Domain

Array

i

j
A[ ]



Data Dependences

Statement instances that access the same data in some order are dependant.

Define a dependence relation:

- statement instance exists
(belongs to its iteration domain)

- two statement instances access the same array element
(equality of access functions)

- one of the instances is executed before another
(lexicographic order of schedules)



Data Dependences

Iteration Domain

Array

i

j
A[ ]



Dependence Distance and Satisfaction

Dependence distance : the difference between logical dates of dependent 
statement instances.

Dependence is satisfied if its distance is lexicographically positive,
i.e. the leading non-zero element is positive => guaranteed order of execution.

Correctness guarantee: all dependences are satisfied.



Dependence Distance and Satisfaction

Distance 0

i

j

j+1
Distance 1



Affine Scheduling



Basic Principles of Affine Scheduling

Find coefficients of affine schedules for each statement such that:

- dependences are satisfied (correctness);
- schedule is invertible to unambiguously generate code.

Dependences and invertibility define a space of valid schedules.  Explore it:

- as an optimization problem given some objective function (ILP);
- exhaustively or sampling + evaluation (e.g., evolutionary methods).



Ensuring Schedule Invertibility

The matrix of coefficients must be non-singular

Iterative approach:

- look for matrix rows iteratively, in separate ILP problems;
- include constraints that guarantee the matrix still has full row rank

One-shot approach:

- look for the entire matrix of coefficients in a single ILP problem;
- restrict the matrix to forms that are guaranteed to have full row rank



Ensuring Schedule Invertibility



Objective Functions



Ingredients of the Objective Function

- Access functions
- controlling the order of access
- extended forms, such as “vectorized” access functions

- Dependence distances*
- dependence satisfaction (positive distance)
- Independence (zero distance = parallelism)
- proximity (possible reuse)

- Binary decision variables
- fusion/fission 
- access or dependence properties like 0/1-stride

- Lexicographical order

* cannot use distances directly because non-affine,
   instead, convert into affine constraints on the schedule coefficients using the Farkas lemma



Some Existing Objective Functions

- Farkas-based scheduler [Feautrier 1992]
- Iterative; maximize the number of satisfied dependences

⇒ validity, inner loop parallelism

- Pluto [Bondhugula et.al, 2008]
- Iterative; minimize the upper bound of the dependence distances

⇒ outer loop parallelism + tiling + possible reuse

- Consecutivity [Vasilache et.al, 2012]
- One-shot: maximize the number of stride-0/1 accesses in the last “dimension”

⇒ vectorization

- Spatial locality [Zinenko et.al, 2018]
- Iterative: Pluto + maximize the “cache-line-sized” dependence distances

⇒ cache locality + possible vectorization



Objective Vocabulary: Parallelism

Encode dependence satisfaction as binary variable (related to distance)

OP: Outer Parallelism

- for the outermost linear dimension, minimize the # of satisfied dependences

IP: Inner Parallelism

- for the innermost linear dimension, minimize the # of satisfied dependences

for (int i = 0; i < NI; ++i)   // distance 0 => parallel
  for (int j = 0; j < NJ; ++j) // distance * => sequential
    A[i] += 42.;
      



Objective Vocabulary: Vectorization

Define penalty for each iterator appearing in the fastest-varying array subscript,
and not appearing in other subscripts (breaks vectorization).

SO: Stride Optimization

- minimize stride penalty

for (int i = 0; i < NI; ++i)
  for (int j = 0; j < NJ; ++j)
    for (int k = 0; k < NK; ++k)
      A[i][j] = 0.;        // reuse
      B[i][k] = 0.;        // vectorization
      C[k][j] = 0.;        // nothing => penalty



Objective Vocabulary: Parallelism+Reuse

Define a benefit for iterator appearance that favors parallelism, another for reuse, 
define a penalty for iterator appearance that breaks reuse or vectorization.

OPIR: Outer Parallelism Inner Reuse

- maximize total benefit, then minimize total penalty

for (int i = 0; i < NI; ++i)          // parallel
  for (int k = 0; k < NK; ++k)        // reuse
    for (int j = 0; j < NJ; ++j)      // vectorizable
      C[i][j] += A[i][k] * B[k][j];



Objective Vocabulary: Fusion/Fission

If two statements are in fused loops, the difference of the resp. scalar schedule
is 0.  Dependences exist between statements that reuse data.

DGF: Dependence-Guided Fusion

- Minimize the penalty for fissioned dependence-related statements

SIS: Separation of Independent Statements

- Minimize the penalty for fused independent statements

for (i = 0; i < N; ++i)
  A[i] = 42.;
for (i = 0; i < N; ++i)
  B[i] = A[i];

for (i = 0; i < N; ++i) {
  A[i] = 42.;
  B[i] = 43.;}



Objective Vocabulary: Stencils

Stencils access adjacent locations and are often wavefront-parallelized.
for (int t = 0; t < T; ++t)
  for (int i = 0; i < H; ++i)
    for (int j = 0; j < W; ++j)
      A[i][j] = A[i-1][j-1]*M[0][0] + A[i-1][j]*M[0][1] + A[i-1][j+1]*M[0][2]
              + A[i  ][j-1]*M[1][0] + A[i  ][j]*M[1][1] + A[i  ][j+1]*M[1][2]
              + A[i+1][j-1]*M[2][0] + A[i+1][j]*M[2][1] + A[i+1][j+1]*M[2][2];



Objective Vocabulary: Stencils

Stencils access adjacent locations and are often wavefront-parallelized.

SPAR: Stencil Parallelization
- Since outer loop is not parallelizable, favor shifting/skewing in this loop only 

to expose inner parallelism.  Penalize skewing coefficients.
SMVS: Stencils Minimization of Vector Skewing

- Further penalize skewing by the loop iterators that appear in fastest-varying 
array subscripts since this breaks vectorization.

for (int t = 0; t < T; ++t)
  for (int i = 0; i < H; ++i)
    for (int j = 0; j < W; ++j)
      A[i][j] = A[i-1][j-1]*M[0][0] + A[i-1][j]*M[0][1] + A[i-1][j+1]*M[0][2]
              + A[i  ][j-1]*M[1][0] + A[i  ][j]*M[1][1] + A[i  ][j+1]*M[1][2]
              + A[i+1][j-1]*M[2][0] + A[i+1][j]*M[2][1] + A[i+1][j+1]*M[2][2];



Selecting Objectives

Analyze iteration domains and access functions to classify programs and select 
the corresponding sequence of cost functions.



Selected Performance Results



Experimental Methodology

- H/W: 3.3 GHz, 10-core Intel i9-7900X CPU
- Benchmarks: PolyBench/C 3.2 (30 polyhedral kernels)
- Conditions:

- Baseline: Pluto 0.11.4 + autotuned tiling
- Tested: PoCC = Pluto with scheduling improvements without autotuning



Performance Comparison



Autotuning Search Space



Refinements: Scalability and 
Customizable Incremental Scheduling



● Grouping “sufficiently similar” accesses:

● Access rank:

− prioritize array references with more subcripts.

● Access multiplicity:

− prioritize repeated accesses.

● Iterative grouping:

− Consider accesses contributing to each other’s multiplicity together.

● Each group optimized separately for temporal/spatial locality

Scalability: Proximity Relation Grouping



● Sort the groups in the ILP to give them more or less priority

● Default heuristic:

− by rank

− by multiplicity

− temporal first

● May include external factors unavailable to a linear optimizer
(types, memory characteristics, costs of cache misses, etc.)

Incremental Scheduling Policies



Refined Scheduling Algorithm Template
● Consists of two parameterizable ILP problems:

○ carry as little spatial proximity relations as possible and produce 
coincident dimensions for parallelism
(based on the Pluto algorithm [Bondhugula et.al 2008]);

○ carry multiple spatial proximity relations without skewing
(based on the Feautrier algorithm [Feautrier 1992]).



● One level of coarse-grain parallelism

− avoid carrying coincident relations in the outer loops.

● Memory hierarchy favoring adjacent accesses

− carry spatial proximity relations in the inner loops.

● False sharing effect

− avoid carrying spatial proximity relations in outer || loops.

● High cost of barrier synchronization inside loops

− if few loops remain to be scheduled, prefer carrying coincident 

● Parallelism/Locality conflict

− requires tiling and different schedule for point loops.

Instantiation for CPUs



● Multiple levels of parallelism

− avoid carrying coincidence relations, communicate with block/thread mapper.

● Memory coalescing along one thread dimension

− carry multiple spatial proximity relations while not carrying coincidence 
relations, ensure mapping to the right thread.

● High overhead of kernel launch

− more aggressive fusion including (spatial) RAR relations

Instantiation for GPUs



Polybench on Sequential CPU

Two versions of ppcg: “post-tile” makes syntactic loop interchange after tiling

Intel Core i7-6600u (Skylake) @ Ubuntu 17.04 + gcc 6.3



Example: 2 matrix multiplications

void 2mm(double alpha, double beta,
         double A[NI][NK], double B[NK][NJ],
         double C[NJ][NL], double D[NI][NL]) {
  double tmp[NI][NJ];
  for (i = 0; i < NI; i++)
    for (j = 0; j < NJ; j++) {
S1:   tmp[i][j] = 0.0;
      for (k = 0; k < NK; ++k)
S2:     tmp[i][j] += alpha * A[i][k] * B[k][j];
    }
  for (i = 0; i < NI; i++)
    for (j = 0; j < NL; j++) {
S3:   D[i][j] *= beta;
      for (k = 0; k < NJ; ++k)
S4:     D[i][j] += tmp[i][k] * C[k][j];
    }
}



Example: 2 matrix multiplications

void 2mm(double alpha, double beta,
         double A[NI][NK], double B[NK][NJ],
         double C[NJ][NL], double D[NI][NL]) {
  double tmp[NI][NJ];
  for (i = 0; i < NI; i++)
    for (j = 0; j < NJ; j++) {
S1:   tmp[i][j] = 0.0;
      for (k = 0; k < NK; ++k)
S2:     tmp[i][j] += alpha * A[i][k] * B[k][j];
    }
  for (i = 0; i < NI; i++)
    for (j = 0; j < NL; j++) {
S3:   D[i][j] *= beta;
      for (k = 0; k < NJ; ++k)
S4:     D[i][j] += tmp[i][k] * C[k][j];
    }
}

S1→(0,i,0,0,j)
S2→(0,i,k,1,j)
S3→(1,i,0,0,j)
S4→(1,i,k,1,j)

Ppcg-spatial

Pluto
S1→(0,i,j,1,0)
S2→(1,i,j,0,k)
S3→(0,i,j,0,0)
S4→(1,i,k,1,j)



Example: LU decomposition

void lu(double A[N][N]) {
 for (i = 0; i < N; i++) {
   for (j = 0; j < i; j++) {
     for (k = 0; k < j; k++)
S1:    A[i][j] -= A[i][k] * A[k][j];
S2:  A[i][j] /= A[j][j];
   }
   for (j = i; j < N; j++)
     for (k = 0; k < i; k++)
S3:    A[i][j] -= A[i][k] * A[k][j];
 }
}

S1→tile(i,j,k); point(i,k,j)
S2→tile(i,j,j); point(i,j,j)
S3→tile(i,j,k); point(i,k,j)

S1→tile(i,k,j); point(i,k,j)
S2→tile(i,j,j); point(i,j,j)
S3→tile(i,k,j); point(i,k,j)

Pluto

Ppcg-spatial

+wavefront parallelism
(i,k,j) → (i+k,k,j)

Reduces false sharing



Parallel CPU
4x Intel Xeon E5-2630 (Ivy Bridge) @ CentOS 7.2.1511 + gcc 6.3



Parallel GPU

GPU performance on Polybench is dominated by efficient parallelism extraction

Nvidia Quadro K4000 (Kepler) @ CentOS 7.2.1511 + CUDA 8.0r1



Affine Scheduling Lessons

- “One-size-fits-all” heuristics don’t really fit all.

- Various optimization objectives can be expressed in polyhedral scheduling.

- Different kernels require different optimization strategies.

- The cost of tile size autotuning can be decreased by picking the right cost 
function, but guessing the best tile sizes remains a challenge.



[Bastoul 2004] Bastoul “Code generation in the polyhedral model is easier than you think” @ PACT’04

[Bondhugula et.al 2008] Bondhugula, Hartono, Ramanujam, Sadayappan “A practical automatic polyhedral parallelizer and 
locality optimizer”  @ PLDI 2008

[Feautrier 1992] Feautrier “Some efficient solutions to the affine scheduling problem” (part I and II) @ Intl. Journal of Parallel 
Programming 21(5) and 21(6).

[Grosser et.al 2014] Grosser, Verdoolaege, Cohen “Polyhedral AST generation is more than scanning polyhedra” @ 
TOPLAS 2015

[Matiyasevich 1970] Matiyasevich “The Diophantineness of enumerable sets” @ Reports of the URSS Academy of 
Sciences 191(2) (in Russian).

[Vasilache et.al 2012] Vasilache, Meister, Baskaran, Lethin “Joint scheduling and layout optimization to enable multi-level 
vectorization”  @ IMPACT 2012

[Zinenko et.al 2018] Zinenko, Verdoolaege, Reddy, Shirako, Grosser, Sarkar, Cohen “Modeling the conflicting demands of 
parallelism and Temporal/Spatial locality in affine scheduling” @ CC 2018

Some Polyhedral Compilation References



Subjective References in Affine Scheduling

● [Feautrier 1992] first Farkas-based approach to affine scheduling: carry 
dependences early

● [Bondhugula et al. 2008] Pluto algorithm: outer parallelism and locality in one 
incremental ILP-based optimization problem

● [Vasilache et al. 2012] introduced access consecutivity constraints and a 
“one-shot” ILP scheduler

● [Verdoolaege and Isoard 2018] extended Vasilache et al. approach to 
incremental ILP scheduling

● [Zinenko et al. 2018] unified polyhedral flow for temporal and spatial locality 
and incremental orchestration of constraints and objectives



Polyhedral Compilation in the Real World



Where From?
Mathematical core: “isl”
parametric linear optimization, Presburger arithmetic

used in GCC’s Graphite and LLVM Polly
and many research projects including Pluto, PoCC, PPCG...

Building on 12 years of collaboration
ARM, Inria, ETH Zürich (Tobias Grosser)
AMD, Qualcomm, Xilinx, Facebook
IISc (Uday Bondhugula)
IIT Hyderabad (Ramakrishna Upadrasta)
Ohio State University, Colorado State University, Rice University
Google Summer of Code
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Research and Industry Transfer - Virtual Lab
https://www.pollylabs.org

● Bilateral contracts ARM, Facebook (FAIR), Xilinx, Inria, ETHZ
in cooperation with Qualcomm (QuIC)

● Focus on LLVM ecosystem: http://llvm.org
→ exploitation & developer community

● Mutualization of core polyhedral compilation infrastructure
● Contributing to domain-specific – deep learning, image processing, 

solvers, linear algebra – and research compilers
● Training and tutorials

http://llvm.org/


93

Timeline

● isl started in 2008, licensed under LGPLv2.1
Used by GCC as its polyhedral library since 5.0
http://repo.or.cz/w/isl.git

● 2013: Relicensed under MIT, through CARP EU project
Used by LLVM through the Polly project

● 2014: Triggered ARM to release tools to generate linear algebra kernels
● 2014: Qualcomm, then ARM, push for Polly Labs
● 2015: Qualcomm Snapdragon LLVM uses Polly, compiles Android OSP 
● 2016: Xilinx starts an isl-based project within Vivado HLS
● 2017: Facebook works on a deep learning compiler using isl

       → Tensor Comprehensions project

http://repo.or.cz/w/isl.git


Nicolas Vasilache, Oleksandr Zinenko,
Theodoros Theodoridis, Priya Goyal, Zach DeVito,

William S. Moses, Sven Verdoolaege,
Andrew Adams, Albert Cohen



Programming Language & Systems Research…
for Deep Learning?

Deep learning has become massively popular over the last 10 years
Machine Learning (ML) frameworks are all over the place

Is this good enough?



Programming Language & Systems Research…
for Deep Learning?



• Existing layers in vendor libraries from Intel, Nvidia, etc.

• Can reach great performance, 95%+ efficiency on a few, ideal kernels

• But the practice is often far from machine peak

• New layer or architecture  →  performance bottleneck 

• High-performance library coders are scarce, not all genius, don’t scale

• ML differs from scientific/high-performance computing:
variety of hardware, data layouts & types, need for symbolic manipulation 
(automatic differentiation, quantization), and programmer expertise levels

Writing “Good” Neural Network Layers

Tedious experience
out of reach from Machine Learning (ML) users and researchers



Derive ML-specific techniques from software synthesis and compilers

• Mini-language, close to mathematics and easy to manage by automatic tools

• Compiler for algorithmic optimization and automatic differentiation

• Compiler for “polyhedral” scheduling and mapping

• Just-in-time specialization of the model (hyper)parameters for efficient kernel 
implementations, e.g., for GPU acceleration

• Works transparently: “A New Op” for machine learning and applications

• Integrated with industry-standard frameworks (Caffe2, PyTorch)

Our Approach

Don’t write programs, synthesize them



• “Direct generation” such as active library [2] or built-to-order (BTO) [3] provide 
effective performance, but miss global optimization

• DSLs such as Halide [4] provide usability, and permit scheduling 
transformations, though manually specify.

• Compilers like XLA [5] or Latte [6] optimize and fuse operators, though 
performance lacking as the language can’t represent complex schedules 
crucial to GPU/others.

[2] Run-time code generation in C++ as a foundation for domain-specific optimization, 2003
[3] Automating the generation of composed linear algebra kernels, 2009
[4] Halide: a language and compiler for optimizing parallelism, locality, and recomputation
      in image processing pipelines, 2013
[5] Xla:domain-specific compiler for linear algebra to optimizes tensorflow computations, 2017
[6] Latte: A language, compiler, and runtime for elegant and efficient deep neural networks, 2016

Prior Work



Our Approach



Our Approach



Synthesize From Model…

Tight mathematical model, emits 1000s optimized lines of code

• Group Convolution

• Kronecker Recurrent Units (KRU)

→ algorithmic exploration of 
storage/recompute tradeoffs 



Synthesize From Model…

● Production MLP from Facebook

● And more complex examples, 
including Google WaveNet



… Rather Than Write Accelerator Code



Polyhedral Compilation to the Rescue



Polyhedral Compilation to the Rescue



Heard That Before?

• 30 years of parallelizing and optimizing compiler research
• … wrapped into a robust, automated tool, with domain specialization
• … with modern C++ interface and tight ML framework integration

• Embed the most complex compositions of loop nest and tensor optimizations



Algorithmic Contributions



O[l+Idx[i][j]][k] => shared_O[l][i][j][k]

• Cache indirectly accessed arrays
• Only when O and Idx are only read (not written)

• Promote direct accesses if tile of fixed size, elements reused, and >= 1 
access without memory coalescing

• Promote indirect accesses in same way (ignore coalescing)

• Heuristics for register promotion as well

Memory Promotion



Performance?



Performance?



TC in a Nutshell



Polyhedral Compilation in the Real World
… once again with broader ambitions



MLIR: Multi-Level Intermediate Representation
for the End of Moore’s Law

Presenting the work of many, many, people

From EuroLLVM 2019 keynote and tutorial



TensorFlow

Huge machine learning community

Programming APIs for many languages

Abstraction layer for accelerators:
- Heterogenous, distributed, mobile, custom ASICs…
- Urgency is driven by the “end of Moore’s law”

Open Source: 
https://tensorflow.org
https://tensorflow.org/mlir

https://tensorflow.org
https://tensorflow.org


Why a new compiler infrastructure?



The LLVM Ecosystem: Clang Compiler

LLVM IR Machine IRClang AST
C, C++

CUDA, OpenCL Asm

                         are SSA IRs:
● Different levels of abstraction - operations and types are different
● Abstraction-specific optimization at both levels

Progressive lowering:
● Simpler lowering, reuse across other front/back ends

Green boxes



Azul Falcon JVM

LLVM IR Machine IRClang AST
C, C++

CUDA, OpenCL Asm

Java & JVM 
Languages Java BC

“Falcon: An Optimizing Java JIT” - LLVM Developer Meeting Oct’2017

Uses LLVM IR for high level domain specific optimization:
● Encodes information in lots of ad-hoc ways: IR Metadata, well known functions, intrinsics, …

● Reuses LLVM infrastructure: pass manager, passes like inliner, etc.

https://llvm.org/devmtg/2017-10/#talk12


Swift, Rust and Julia have a high level IR - Not C and C++

LLVM IR Machine IR Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

“Introducing MIR”: Rust Language Blog, “Julia SSA-form IR”: Julia docs

● Domain specific optimizations: generic specialization, devirt, ref count optzns, library-specific optzns, etc

● Dataflow driven type checking - e.g. borrow checker in Rust
● Domain specific optimizations, progressive lowering

Clang AST
C, C++

CUDA, OpenCL

https://blog.rust-lang.org/2016/04/19/MIR.html
https://docs.julialang.org/en/v1/devdocs/ssair/index.html


TensorFlow XLA Compiler

LLVM IR Machine IR Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

XLA HLOTF GraphTensorFlow 
Ecosystem

“XLA Overview”: https://tensorflow.org/xla/overview (video overview)

● Domain specific optimizations, progressive lowering, ad-hoc emitters

Clang AST
C, C++

CUDA, OpenCL

https://www.tensorflow.org/xla/overview
https://www.youtube.com/watch?v=2IOPpyyuLkc


The TensorFlow compiler ecosystem

TensorFlow 
Graph

LLVM IR
XLA HLO

TPU IR

TensorFlow Lite

Several others
Tensor RT

nGraph

NNAPI

Many others

Core ML

Many “Graph IRs”, each with challenges:
● Similar-but-different (some, proprietary) technologies: not going away anytime soon

● Duplication of infrastructure at all levels

→ Need SSA-based design to generalize and improve “ML graphs”



Great!
● High-level domain-specific optimizations
● Progressive lowering encourages reuse between levels

Domain Specific IRs

Not great!
● Huge expense to build this infrastructure
● Reimplementation of all the same stuff

○ pass managers, location/error tracking, testing tools
○ inlining, use-def chains, constant folding, partial redundancy elimination, ...

● Innovations in one community don’t benefit the others



MLIR Primer



Many similarities to LLVM

func @testFunction(%arg0: i32) {
  %x = call @thingToCall(%arg0) : (i32) -> i32
  br ^bb1
^bb1:
  %y = addi %x, %x : i32
  return %y : i32
}

Module

Function

Block

Operation

Operation

Block

Operation

Operation 

● SSA, CFG, typed, three address
● Module/Function/Block/Operation structure
● Round trippable textual form
● Syntactically similar:



MLIR Type System: some examples

Scalars: 
● f16, bf16, f32, … i1, i8, i16, i32, … i3, i4, i7, i57, …

Vectors: 
● vector<4 x f32>, vector<4x4 x f16>

Tensors, including dynamic shape and rank:
● tensor<4x4 x f32>, tensor<4x?x?x17x? x f32>, tensor<* x f32>

Others: 
● functions/closures, memory buffers, quantized integers, TensorFlow stuff, ...



MLIR Operations: an open ecosystem

No fixed / builtin list of globally known operations:
● No “instruction” vs “target-indep intrinsic” vs “target-dep intrinsic” distinction

○ Why is “add” an instruction but “add with overflow” an intrinsic in LLVM? 😿

Passes are expected to conservatively handle unknown operations:
● just like LLVM does with unknown intrinsics

func @testFunction(%arg0: i32) -> i32 {
  %x = “any_unknown_operation_here”(%arg0, %arg0) : (i32, i32) -> i32
  %y = “my_increment”(%x) : (i32) -> i32
  return %y : i32
}



MLIR Operations Capabilities

Operations always have: opcode and source location info

Operations may have:
- Block arguments instead of PHI nodes
- Any number of SSA results and operands
- Attributes: constant values of custom syntax and type
- Regions: discussed in later slide
- Custom printing/parsing - or use the more verbose generic syntax



Extensible Operations Allow Multi-Level IR

TensorFlow
%x = "tf.Conv2d"(%input, %filter)
          {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
    : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

XLA HLO

LLVM IR

%m = “xla.AllToAll"(%z)
          {split_dimension: 1, concat_dimension: 0, split_count: 2}
    : (memref<300x200x32xf32>) -> memref<600x100x32xf32>

%f = "llvm.add"(%a, %b) 
    : (f32, f32) -> f32

Also: TF-Lite, Core ML, other frontends, ...

Don’t we end up with the JSON/XML of compiler IRs???  



MLIR “Dialects”: Families of defined operations

Example Dialects:
- TensorFlow, XLA HLO, TF Lite, Swift SIL, ...
- linalg, affine, LLVM IR, ...

Dialects can define:
- Operations
- Custom type and attribute systems

Operation can define:
- Invariants on # operands, results, attributes, ...
- Custom parser, printer, verifier, ...
- Constant folding, canonicalization patterns, …



Operations in a Nutshell

 %res:2 = "mydialect.morph"(%input#3) { some.attribute : true, other_attribute : 1.5 }
             : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
                                                                    loc(callsite("foo" at "mysource.cc":10:8))

● No predefined set of instructions
● Operations are like “opaque functions” to MLIR

Name of the
results

Op Id
Number of 

value returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix 
for the type

Opaque string
/

Dialect specific 
type

List of attributes:
constant named arguments

Mandatory and 
Rich Location



Nested Regions in a Linear IR

➔ Functional control flow, XLA fusion node, lambdas/closures, parallelism 
abstractions like OpenMP, etc.

  %7 = tf.If(%arg0 : tensor<i1>, %arg1 : tensor<2xf32>) -> tensor<2xf32> {
    … “then” code...
    return ...
  } else {
    … “else” code...
    return ...
  }

  %2 = xla.fusion (%0 : tensor<f32>, %1 : tensor<f32>) : tensor<f32> {
  ^bb0(%a0 : tensor<f32>, %a1 : tensor<f32>):
    %x0 = xla.add %a0, %a1 : tensor<f32>
    %x1 = xla.relu %x0 : tensor<f32>
    return %x1
  }



Bigger Example: Polyhedral IR Dialect

affine.for and affine.if represent simplified polyhedral schedule trees:
● Great match for ML kernels
● Includes systems of affine constraints, mappings, solvers, etc.

func @matmul_square(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
  %n = dim %A, 0 : memref<?x?xf32>

  affine.for %i = 0 to %n {
    affine.for %j = 0 to %n {
      store 0, %C[%i, %j]       : memref<?x?xf32>
      affine.for %k = 0 to %n {
        %a    = load %A[%i, %k] : memref<?x?xf32>
        %b    = load %B[%k, %j] : memref<?x?xf32>
        %prod = mulf %a, %b     : f32
        %c    = load %C[%i, %j] : memref<?x?xf32>
        %sum  = addf %c, %prod  : f32 
        store %sum, %C[%i, %j]  : memref<?x?xf32> 
      }
    }
  }
  return
}



More on MLIR: See the EuroLLVM’19 Tutorial
Example: DSL and Compiler for a Heterogeneous World

LLVM IR Machine IRToy ASTToy AsmTIR

Shape Inference
Function Specialization

High-Level 
Language Specific

Optimizations

HW Accelerator 
(TPU, GPU, FPGA, ..)

Need to analyze and transform the AST
→ heavy infrastructure

And is the AST really the most friendly 
representation we can get? New HW: are we extensible

and future-proof? 



More on MLIR: See the EuroLLVM’19 Tutorial
It’s All About Dialect(s)

LLVM IR Machine IRToy ASTToy Asm

High-Level 
Language Specific

Optimizations

HW Accelerator 
(TPU, GPU, FPGA, ..)

MLIR

Implemented
as Dialect

Implemented
as Dialect

TIR

Shape Inference
Function Specialization



MLIR is a Large Project...

Albert Cohen
Alex Zinenko
Alexandre Passos
Andrew Selle
Andy Davis
Bjarke Roune
Brian Patton
Chris Lattner
Cliff Young
David Majnemer
Daniel Killebrew
Dimitrios Vytiniotis
Feng Liu
Himabindu Pucha

Jacques Pienaar
James Molloy
Jeff Dean
Jianwei Xie
Lei Zhang
Mark Heffernan
Martin Wicke
Mehdi Amini
Michael Isard
Nicolas Vasilache
Paul Barham
Peter Hawkins
Rasmus Larsen
Richard Wei

River Riddle
Sanjoy Das
Sergei Lebedev
Skye Wanderman-Milne
Smit Hinsu
Sourabh Bajaj
Stella Laurenzo
Tatiana Shpeisman
Todd Wang
Uday Bondhugula
Ulysse Beaugnon
Yanan Cao



MLIR-Related Research Projects



Hackability & HW/SW Research

Aiming for a super-extensible system, catalyzing next-gen accelerator research:

● domain-specific languages / annotations lower naturally to MLIR
● domain-specific HW constructs are first-class operations
● extend type system: novel numerics, sparse tensors, (G)ADTs, …
● concurrency & parallel constructs, memory modeling
● many classes of transformations have structured search spaces: algorithmic 

rewriting, graph rewriting, memory-recompute, polyhedral, and synthesis

Accelerate innovation in hardware, compiler algorithms, and applications thereof



Compile to Learn → Learn to Compile

● Move past handwritten heuristics
○ NP complete problems
○ Cost models that are hard or infeasible to characterize
○ Hardware explosion, model diversity, problem diversity, … can’t scale

● Autotuning, search and caching
○ Separate algorithms and policy
○ Exploit structure in search space

Two projects: past & future

& Telamon



Telamon: Commutative Optimizations
on Partially Specified Implementations

with Ulysse Beaugnon, Basile Clément and Andi Drebes, Nicolas Tollenaere
ENS, Inria, Google

CC 2017: Optimization space pruning without regrets
Ulysse Beaugnon, Antoine Pouille, Marc Pouzet, Jacques Pienaar, Albert Cohen

arXiv preprint: On the Representation of Partially Specified Implementations and its Application to the Optimization of Linear Algebra Kernels on GPU
Ulysse Beaugnon, Basile Clément, Nicolas Tollenaere, Albert Cohen

https://ai.google/research/pubs/pub46935
https://arxiv.org/abs/1904.03383


Context: “superoptimizing” loop nests in numerical kernels
Challenge: finding good/best combinations of implementation decisions is 
hard

● Optimizations may enable or disable others
● Transformations ordering affects performance
● Cannot infer precise performance estimation from intermediate compilation steps

Corollary: optimizing compilation never seems to catch up... new hardware, 
optimization tricks…  effectively witnessing a widening performance portability 
gap

Problem Statement



Candidates as Partially Specified 
Implementations

● Optimizations as independent, 
commutative decisions
e.g., tile? unrolling? ordering?

● Vector of choices, listed upfront, 
decisions taken in any order
defer any interference to search

● Synthesize imperative code from 
fixed/complete decision vectors
e.g., infer buffers, control flow

Constraint Programming for 
Semantics and Resource Modeling

● Control structure
e.g., loop nesting

● Semantics of the kernel
e.g., def-use, array dependences

● Optimization interactions
e.g., enabling transformations

● Resource constraints
e.g., local memory

Branch-and-Bound- and 
MCTS-enabled Search

● Lower bound derived from 
orthogonal resource modeling
inspired by roofline modeling

● Lower bound for a candidate = 
ideal performance for a set of 
potential implementations

● Empowered by structured, 
decision vector and CSP-based 
implementation space

Telamon Approach



Inspired From Polyhedral Compilation

● Polyhedral compilation
○ Affine scheduling

e.g., ILP-based
○ Code generation

from affine schedules to nested loops

● Meta-programming array processing code
○ Halide / TVM specific combinators

and scheduling/mapping primitives
○ URUK, CHiLL

with automatic schedule completion

TVM example: scan cell (RNN)
m = tvm.var("m")
n = tvm.var("n")
X = tvm.placeholder ((m,n), name ="X")
s_state = tvm.placeholder ((m,n))
s_init = tvm.compute((1,n), lambda _,i: X[0,i])
s_do = tvm.compute((m,n), lambda t,i: s_state[t -1,i] + X[t,i])
s_scan = tvm.scan(s_init, s_update, s_state, inputs =[X])
s = tvm.create_schedule (s_scan.op)
// Schedule to run the scan cell on a CUDA device
block_x = tvm.thread_axis ("blockIdx.x" )
thread_x = tvm.thread_axis ("threadIdx.x" )
xo,xi = s[s_init] .split(s_init.op.axis[1], factor=num_thread)
s[s_init].bind(xo, block_x)
s[s_init].bind(xi, thread_x)
xo,xi = s[s_do].split(s_do.op.axis[1], factor=num_thread)
s[s_do].bind(xo, block_x)
s[s_do].bind(xi, thread_x)
print(tvm.lower(s, [X, s_scan], simple_mode =True))

Candidates?

https://en.wikipedia.org/wiki/Polytope_model
http://halide-lang.org
https://tvm.ai
http://www.cs.colostate.edu/~pouchet/doc/pact-article.07.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.214.8396
https://docs.tvm.ai/api/python/tvm.html#tvm.var
https://docs.tvm.ai/api/python/tvm.html#tvm.var
https://docs.tvm.ai/api/python/tvm.html#tvm.placeholder
https://docs.tvm.ai/api/python/tvm.html#tvm.placeholder
https://docs.tvm.ai/api/python/tvm.html#tvm.compute
https://docs.tvm.ai/api/python/tvm.html#tvm.compute
https://docs.tvm.ai/api/python/tvm.html#tvm.scan
https://docs.tvm.ai/api/python/schedule.html#tvm.create_schedule
https://docs.tvm.ai/api/python/tvm.html#tvm.thread_axis
https://docs.tvm.ai/api/python/tvm.html#tvm.thread_axis
https://docs.tvm.ai/api/python/build.html#tvm.lower


Inspired From Program Synthesis and Superoptimization

● Program synthesis
○ Start from denotational specification, possibly partial (sketching), or 

(counter-)examples
Telamon ≈ Domain-specific denotations

○ Guess possible implementations by (guided) sampling lots of random ones
Telamon ≈ Guess efficient implementations by (guided) sampling lots of stupid 
ones

○ Filter correct implementations using SMT solver or theorem prover
Telamon ≈ Constraint programming to model both correctness and hardware 
mapping

● Superoptimization
○ Typically on basic blocks, with SAT solver or theorem prover and search
○ Architecture and performance modeling

Telamon ≈ Operate on loop nests and arrays

Constraints?

https://en.wikipedia.org/wiki/Program_synthesis
https://en.wikipedia.org/wiki/Superoptimization


Inspired From Adaptive Libraries and Autotuning

● Feedback-directed and iterative compiler optimization, lots of work since the late 90s
● Adaptive libraries

○ SPIRAL: Domain-Specific Language (DSL) + Rewrite Rules + Multi-Armed Bandit or 
MCTS
http://www.spiral.net

○ ATLAS, FFTW, etc.: hand-written fixed-size kernels + micro-benchmarks + 
meta-heuristics

○ Pouchet et al. (affine), Park et al. (affine and CFG): Genetic Algorithm, SVM, Graph 
Kernels 

● Telamon
○ vs. SPIRAL, FFTW: better structured, independent/commutative choices, 

branch-and-bound
○ vs. Pouchet and Park: finite space, bounded vectors

Search?

http://www.spiral.net/
https://scholar.google.com/citations?user=TCppIZYAAAAJ&hl=fr
https://scholar.google.com/citations?user=RNzbA4IAAAAJ&hl=en


Partially Instantiated Vector of Decisions
● Every choice is decision variable
● List the domain of variables: the values they can take
● Taking a decision = restricting a domain
● Fully specified implementation ⇔ All decision variables assigned a single value

- order(a, b) ∈ { Before, After }
- order(a, c) ∈ { Before }
- …

Candidates



Kernel Decisions

Enforce coherent decisions with constraints

order(x, d0) = Inner && order(x, y) = Before => order(y, d0) ∈ { Inner, After }

%x = load X[0]

%y = add %x, 42

for %d0 = 0 to 16 {

    %z = add %y, %d0

}

%y = add %x, 42

for %d0 = 0 to 16 {

    %x = load X[0]

    %z = add %y, %d0

}

for %d0 = 0 to 16 {

    %x = load X[0]

    %y = add %x, 42

    %z = add %y, %d0

}

order(%x, %d0) ∈ { Before, Inner }

order(%x, %y)  ∈ { Before }

order(%y, %d0) ∈ { Before, Inner }

...

order(%x, %d0) ∈ { Before, Inner } <- decision

order(%x, %y)  ∈ { Before }

order(%y, %d0) ∈ { Before, Inner }

...

order(%x, %d0) ∈ { Before, Inner } <- decision

order(%x, %y)  ∈ { Before }

order(%y, %d0) ∈ { Before, Inner } <- constraint propagation

...

Candidates and Constraints



Well Behaved Set of Actions

● Commute

● All decisions known upfront

● Constraint propagation almost never backtracks in practice

Flat, Fixed Sized, Ideal Environment for Reinforcement Learning (RL)

● Extract features from the decision vector

● Global heuristics, aware of all potential optimizations

● Infer all possible decisions (actions) and/or estimate performance

Enabling Better Search Algorithms



Find an Assignment for Functions

 kind: Dimension -> { Loop, Unrolled, Vector, Thread, Block }

 order: Statements x Statements -> { Before, After, Inner, Outer, Fused }

That Respects Constraints

 ∀ a, b ∊ Dimension. order(a, b) = Fused => kind(a) = kind(b)

 (a.k.a. typed fusion)

Constraint Satisfaction Problem (CSP)



● Finding an implementation is easy: random decisions + constraint propagation
● Use CSP to represent, not to solve the problem
● No analytical objective function

○ Analytical functions cannot model the complexity of the hardware
○ Hardware details are proprietary
○ Use actual evaluations
○ And external heuristics

CSP Without the Optimization Aspect



Generic loop nest and array optimizations + GPU-specific optimizations

Supported Decisions

● Strip mining factor
● Loop interchange
● Loop fusion
● Statement Scheduling
● Rematerialization

● Array placement in memory spaces

● Memory layout

● Copy to local memories

● Vectorization

Evaluation: Telamon on GPU



Computes Z = X + Y
- load X

- load Y

- add X and Y into Z

- store Z

Implementation space

● Each instruction in its own loop

● Strip-mined 3 times

● Can choose strip-mining factors

● Can fuse, interchange and unroll loops

● Can reorder instructions

● Can coalesce transfers across memory spaces

Example: Vector Addition



GPU Execution

Telamon + GPU Backend 
(Rust)

Implementation
(PTX)

Implementation Space 
Description

(Custom DSL)

Kernel Description
(Rust API Calls)

Compiled Constraint Program

Monte Carlo Tree Search & Program Synthesis

Telamon System Overview



Performance model of a lower bound on the execution time

∀x∊S. Model(S) ≤ Time(x)

● Enables Branch & Bound, with feedback from real executions
○ Reduces the search space by several orders of magnitude
○ Prunes early in the search tree (75% in the first two levels for matmul on GPU)

● Possible because it is aware of potential future decisions
● GPU model of block- and thread-level performance features, as well 

as single-thread microarchitecture
○ No cache and registers model (yet)
○ Coarse-grain model of the interaction between bottlenecks

Branch and Bound + Monte Carlo Tree Search 
(MCTS)



Source: Wikipedia

Zooming in the MCTS-Based Search



Results on Nvidia Kepler GPU



● High variance of the search time (stuck in suboptimal areas)

● Lots of dead-ends
○ Mostly due to performance model
○ ~20x more dead-ends than implementations

● Non-stationary distribution due to cuts
○ Somewhat intrinsic to MCTS
○ Branch & bound strategy makes it trickier

Search Issues (Ongoing Research)



Take Home Message



In a Nutshell — Benefits of Polyhedral Compilation

Search Space
Abstract, Partially Specified 

Implementations

● Optimizations and lowering,
choices and transformations
e.g., tile? unrolling? ordering?

● Choice vector or sequence of 
transformations/rewrite rules 
combine with search

● Synthesize imperative code, API 
calls, assembly code 
infer buffers, control...

Constraints
Functional Semantics and 

Resource Modeling

● Control structure
e.g., loop nesting

● Semantics of the kernel
e.g., def-use, array dependences

● Optimization interactions
e.g., enabling transformations

● Resource constraints
e.g., local memory, DMA

Search Heuristics
Semi-automatic or Black-box 

Optimization

● Objective functions
linear approximations, resource 
counting...

● Feedback from actual execution
profile-directed, JIT, 
trace-based...

● Combinatorial optimization
ILP, SMT, graph algorithms, 
reinforcement learning...

With numerous applications:
    compiler construction, domain-specific optimization, performance portability


