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The following is intended to provide some insight into a line 
of research in Oracle Labs. It is intended for information 
purposes only, and may not be incorporated into any 
contract. It is not a commitment to deliver any material, 
code, or functionality, and should not be relied upon in 
making purchasing decisions. Oracle reserves the right to 
alter its development plans and practices at any time, and 
the development, release, and timing of any features or 
functionality described in connection with any Oracle 
product or service remains at the sole discretion of Oracle.  
Any views expressed in this presentation are my own and do 
not necessarily reflect the views of Oracle.



Overview
• Hardware Technology


• System Architecture


• The promise for software, and challenges to realization


• Some musings about Java


Caveats: 


• Many more questions than answers


• I haven’t actually used the Intel hardware



Background: 
Hardware technology
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DRAM internals

• Capacitor leakage -> refresh

Cct Diagram: https://www.electronics-notes.com/articles/electronic_components/semiconductor-ic-memory/dynamic-ram-how-does-dram-work-operation.php

Source DOI: 10.1038/srep02088 

Source: Wikipedia



Memory vs Logic

• Why isn’t the memory on the same chip as the 
processor?


• How many RAM chips per CPU chip?


• Incompatible processes


• Optimize separately: fast logic vs dense, low-power 
memory



DRAM is a commodity

Micron Net Margin 
Chart: https://www.macrotrends.net/stocks/charts/MU/micron-technology/profit-margins



Storage

• Non-volatile, large, cheap, slow


• Disk and Flash (aka SSD)


• Transparently used to expand volatile memory: paging


• Or, via a block/file API as non-volatile memory



Amdahl’s Second Law



Amdahl’s Second Law

• For a balanced system:


For each instruction/second:  
1 byte of memory, and  
1 bit of I/O bandwidth



Storage has been falling 
behind
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Diagram: The missing memristor found, Strukov et al, Nature v.453 p.80
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Hysteresis — circuit 
“memory”







How we found the missing memristor, 
R. Stanley Williams, IEEE Spectrum, Dec 2008 29—35



An explosion of 
technologies

• Magnetoresistive RAM 
Spin-Torque Transfer RAM

• Phase Change Memory
 • Ferroelectric RAM

• Resistive RAM

Diagrams:  Boukhobza et al, Emerging NVM, ACM Trans. Des. Aut. Elec. Sys, Jan 2018



NVRAM trends

• Order-of-magnitude density improvement 
over DRAM makes mass adoption highly 
likely


• Some companies are claiming their 
technology will match and surpass DRAM, 
e.g., Nantero, based on carbon nanotubes

Image: https://en.wikipedia.org/wiki/3D_XPoint#/media/File:3D_XPoint.png



Software



SNIA NVM Programming 
Model

• Storage Networking Industry Association — a consortium 
of companies that develops and promotes vendor-neutral 
architectures and standards.   snia.org


• Has been developing a NVM Programming Model since 
~2012.  

http://snia.org


NPM in a single diagram

Diagram: https://pmem.io/2014/08/27/crawl-walk-run.html



Intel Optane DC Persistent Memory 
using 3D XPoint circuit technology

• GA 2019 April, requires Cascade 
Lake CPU and system


• Chips made by Micron


• ReRAM? PCM? They’re not saying.

Image: https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

Image: https://en.wikipedia.org/wiki/3D_XPoint#/media/File:3D_XPoint.png



Speeds and feeds
• 128Gb chips assembled into DIMMs of 128, 256 or 512GB 

(cf: biggest DRAM chip so far is 16Gb)


• From UCSD paper (https://arxiv.org/pdf/1903.05714.pdf):


• Random read ~300ns (cf DRAM: 80ns; 3.75:1)


• Read bandwidth ~⅓ DRAM, write ~⅙ 


• Endurance?  “adequate” 
5-year warranty; probably around 108 writes


• Price: around 20—40% of DRAM per bit.

https://arxiv.org/pdf/1903.05714.pdf


Systems

Cascade Lake system needed: up to 3TB PM/socket

https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Population-Configuration.pdf



Operating Modes

https://software.intel.com/en-us/articles/second-generation-intel-xeon-processor-scalable-family-technical-overview
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Operating Modes

https://software.intel.com/en-us/articles/second-generation-intel-xeon-processor-scalable-family-technical-overview



Wear-leveling
• AppDirect… “direct” access to PM?


• [according to UCSD] PM organized as 256B blocks, accessed 
via a mapping table.


• Writes appear to go into a buffer (fast)


• Indirection allows for bad block management and wear-leveling.


• Spare capacity 


• Max write rate with perfect leveling yields 2M writes/block 
within 5y warranty



Using Optane PM

• Supported by Linux and Windows


• Treated like a disk: contains a filesystem


• mmap() can be used to map a (part of a) file into a 
process’ address space without an intermediate buffer


• DAX - Direct Access



Persistence lifecycle

• Create a region — a piece of or a whole file, intended to 
contain persistent data


• Attach the region (mmap())


• Read and write using load, store, etc 


• Detach (close())
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How to achieve durability

• Write to memory ⇒ update likely to be in cache


• Execute CLWB - Cache Line Write Back ⇒ 
asynchronously writes cache line to memory


• Execute SFENCE or MFENCE - Store/Memory Fence ⇒ 
waits for asynchronous write to complete
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Using NVRAM



Position-independent data

• Might not want to rely on mmap() mapping to the same 
address


• Hence, data could be either


• position independent — e.g. self-relative, or 


• relocatable - linked after mapping.



Self-relative data

• A pointer is represented by the offset from its own 
address to the target.


• Just like PC-relative branch offsets.


• If pointers can point to themselves (i.e., have value 0) then 
the NULL pointer must have some other value (e.g., 1, 
which would point to a byte within the pointer).



Data Relocation
• Data will have been previously mapped at some address


• After attach, find the pointers and adjust them by the offset to 
the new mapping.


• Must be able to find the pointers — tricky in some languages 


• For a big file, don’t want to do this eagerly — long link pause. 
Could do incrementally using page protection.


• What if there’s a crash during relocation?


• Doesn’t support multiple simultaneous mappings



A new kind of dangling 
pointer

• After a restart and re-attach, persistent regions could 
have moved and volatile data existing before the restart 
have disappeared.


• Hence: bad idea to have references from one region to 
another, except from a volatile region to a persistent 
region.  Lifetime correctness


• Unless: metadata and behavior can identify such 
references and reconstruct or nullify before next use. 
Need a way to execute code at re-attach.



Durability is not directly 
observable

• Cache coherence means one core can read a memory location from 
another core’s cache


• When reading a value from a NV location, written by another thread, the 
thread cannot know if that value is or was durable 

• The writer must tell the reader when it becomes durable (via a side-
channel)


• Only one thread at a time executing write-writeback-fence


• One approach: maintain a volatile copy of a durable value


• See “The Observability Problem with Persistent Memory”, Bill Bridge, 
https://medium.com/@mwolczko/non-volatile-memory-and-java-part-2-c15954c04e11 



What are the advantages of 
persistent memory?

• Reduced startup time — no long wait while data are read 
from block storage into DRAM


• Reduced update latency—an update can be durable in 
<<1μs


• Higher capacity, density and lower cost/bit



The dream of NVRAM
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The dream of NVRAM
• We compute using in-memory representations

• Then, we have to change representation to store


• Requires code


• Makes a copy


• Takes time and energy

Can we eliminate this second representation?

Lisp’s sys-out (1967), Smalltalk’s snapshots (1974)

Atkinson, Bailey, Chisholm, Cockshott and Morrison,  
PS-algol: a language for persistent programming (1983)
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The dream of NVRAM
• Boot and run from NVRAM—all software RAM-resident

• Persistent processes


• Need to handle references to external state (e.g., 
network connections)

• All software based on transactions and recovery

• Micro-reboot — only restart what’s broken/changed

• Security is paramount

user’s

⁁



Turning the dreams into 
reality

• Both dreams involves the elimination of some storage 
(i.e., files) and its replacement by persistent memory


• For success, must understand existing requirements and 
satisfy them.



Why do we store?
• To persist data


• So that the data stay around


• To have a record of how the data used to be


• To share data


• Multiple processes accessing the same file


• Sending a copy



One size does not fit all

• Storage representations are often:


• Simpler


• Portable (language-, machine-, OS-independent)


• Documented


• Standardized



Size limitations of PM
• NVRAM will have size limitations related to RAM:


• Physical address size


• Socket and other electrical limitations


• Size and speed are opposed


• Virtualization can remove size limitations at the cost of speed:


• Distributed Shared Memory (1980s)


• Gen-Z consortium (now) — memory semantics across a network
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“Have you tried turning it off 
and on again?”

• Poll: who has successfully restarted an application or a 
machine to resolve a problem in the last…


• month?


• week?


• day?


• Do restarts work?  Why?



Kinds of failures

Terminating


• Power loss


• Unrecoverable memory error


• Accidental termination by 
operator or external agent


• Fatal bug

Non-terminating


• Infinite loop / livelock


• Deadlock


• Data corruption caused by 
bug


• Memory leak 
 
All handled by restart, unless 
corrupt data gets persisted



Hardware failures
• Hardware fails!


• Bit flips in DRAM are well-characterized


• Typically a single bit, occasionally more


• Usually due to ionizing radiation (cosmic rays, background sources)


• Consumer-grade hardware uses a parity bit to detect single-bit errors


• Enterprise-grade hardware uses multiple Error Checking and Correcting 
(ECC) bits for Single Error Correction, Double Error Detection (SECDED)


• Not a rare event in a data center



Errors in memory
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Errors in memory
• Intel/Micron has not published failure mode or error rate data for 

3D XPoint

• The modules will certainly use ECC techniques to reduce the raw 
error rates

• Existing error reporting methods (for DRAM) are used for Optane.  

• What happens when there is an uncorrectable error?

• DRAM: kill the owning process and restart

• NVRAM: need to recover data from backup/log.

Some programming req
uired



Security

• Malware often exploits access to memory


• Buffer overrun, return-oriented programming, etc.


• NVM increases the attack surface: more stuff in memory, 
things which were in the filesystem now just a load or 
store away


• Optane encrypts “data at rest”
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Nightmare #2:  
Software changes…

• …and with it, the structure of data


• If the data persist, we must be able to restructure as the software 
changes.


• Databases call this schema evolution.


• Most languages have no conceptual framework for this.


• Interactive systems typically address this, e.g., Smalltalk


• Can also be tackled at the binary level (e.g., ksplice)


• Generally described as Dynamic Software Update.



Transforming data as code 
evolves

Code v.N Code v.N+1

Data v.N Data v.N+1

T

T



Challenges
• Preserving relationships: identity, equality, sharing, etc.  

Example: if two variables refer to the same object, and the 
object is updated, then they should still refer to the same 
object after, even if they are on the stack, in objects, 
globals, etc.


• What are the types and values available in T? Need to be 
able to refer to both old and new types.


• Order of update?


• Updating derived values



• The typical approach is to provide default values for new variables, 
and let ad-hoc code perform re-initialization


• Primitive operations are needed of the kind


• “Find all values of this type”


• “Find all references to this object” 
 
Tricky, given that ad-hoc code is being run (and new objects 
and values are being created)


• “Replace all references to A by references to B” (A and B are of 
different types)



Language issues



Consistency

• Software must indicate consistent states


• Runtime must be able to recover to a consistent state


• Typically involves taking some kind of snapshot from 
time-to-time, and logging important events between 
snapshots



Restarting after abnormal termination 
1. Externally caused

• Having restarted after abnormal termination, must be able 
to recover persistent data to a consistent state


• If termination was caused by an external event, then the 
state just before termination was consistent — but we have 
lost all volatile data and the external environment has 
changed.


• Must recover to the state after the last completed change*, 
and discard updates made from incomplete changes.


* Or run forward to a new consistent state



Restarting after abnormal termination 
1. Externally caused

• Having restarted after abnormal termination, must be able 
to recover persistent data to a consistent state


• If termination was caused by an external event, then the 
state just before termination was consistent — but we have 
lost all volatile data and the external environment has 
changed.
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Restarting after abnormal termination 
2. Bugs

• If termination was caused by a bug, then we need to 
determine an earlier, correct state, recover to that, and 
somehow deal with all the inputs received since that time.


• This is tricky. 


• Maybe this is why the current separation into memory and 
storage works: storage operations are usually correct, 
and most bugs are confined to RAM



A fallback strategy
• Memory is a scratchpad and cache


• Make this explicit using PM: separate the core data from 
the cached structures and the scratchpad


• The scratchpad can be volatile


• The caches can persist, but are discarded on failures of 
behavior


• Correctness of the core data must be preserved at all 
costs



Consistency

• Software must indicate consistent states


• Runtime must be able to recover to a consistent state


• Typically involves taking some kind of snapshot from 
time-to-time, and logging important events between 
snapshots



Consistency — of what?

• From a single data structure  — transactions on objects


• … to the entire of the program state — snapshot the heap



Database transactions
• Snapshot - update - commit (or abort and roll back)


• If executed serially, commit can be global.  Early DBs 
were like this.


• To improve performance, transaction are executed 
concurrently. 


• Optimistic concurrency — abort if transactions conflict


• Overall control is in the client program — outside the 
DBMS



ACID
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Is recovery implicit or 
explicit?

• Implicit: 


• Failure terminates program


• At restart, state is rolled 
back

• Explicit:


• A transaction can be 
aborted but execution 
continues


• Can’t rollback everything



Specifying persistence

• By type


• Per object


• At allocation


• Dynamically — move objects


• By reachability



Type

• How to avoid code duplication?


• Some code applies to both volatile and persistent 
values


• Can legacy code be used without change?  On persistent 
objects?



Static types

• Static type checking assumes a consistent type regime in 
the software before any data are created


• Instead, we will need to compose systems from type-
checked software and an independently checked heap (or 
heap region)



Compiling persistent code

• Compiler should emit write-backs and syncs for 
persistent updates


• In addition to type soundness, must enforce lifetime 
correctness 


• Shouldn’t reference volatile data from persistent 
objects


• Automatically maintaining recovery metadata



Persistence by reachability

• Designate some objects/values as persistent roots 

• Anything reachable from the roots is automatically 
persistent; everything else is volatile.



Persistence by reachability

• Reference assignment can result in immediate relocation 
to persistent memory


• Of a subgraph


• Old referenced value can become volatile - can be moved 
lazily, or GCed


• How to avoid entangling the core state with other state?


• More on this shortly…



Programming language and 
runtime issues

• GC: must be resilient to failure, scale to enormous heaps


• Unmanaged code — trashing the persistent managed 
heap


• Unmanaged persistent data?


• Heap layout stability and implementation-independence


• Monolithic persistent heap? Or partitioned, modular?


• Objects which defy persistence



Objects which defy 
persistence

• If an object refers to external state it may fail when the external 
state changes and the object does not reflect the change. 
Examples:


• Files and file descriptors, network connections


• Process IDs


• Environment and locale


• Stack frames for external code 


• …



Resumption issues

• But what if the external state changes while the object is 
in hibernation?


• Do we check all the objects when we wake?  At next use?


• How do we even know to check?  File descriptor is an int, 
PID is an int, filename is a string, …


• Code must be explicit about capturing external state, 
and provide a way to check and update. 



Case study: NVM-Direct
• An extension of C for persistence, by Bill Bridge 

https://github.com/oracle/nvm-direct


• Explicit separation of volatile memory from persistent regions


• Adds nested transactions, associated locks and compensation code


• A transaction is associated with a region 


• Pointers to NVM, assignments to NVM: use new syntax


• Compiler generates flushes and undo records


• Structs allocated in NVM must be declared persistent


• Compiler and library use self-relative pointers

https://github.com/oracle/nvm-direct


An example 

From https://github.com/oracle/nvm-direct/blob/master/NVM_Direct_Presentation.pdf



Software evolution in NVM-
Direct

• In NVM-Direct, the programmer is responsible for deciding when a 
new version has been introduced.


• Allows for bug fixes and other small changes


• No need for complex algorithms to infer when a change is 
significant.


• Every version of each type has an associated unique ID


• The program and the data contain the ID and they must match


• The program can supply code to update data to a more recent 
version.



Java and NVM

• Millions of programmers


• Billions of lines of code


• My goal: large-scale near-term adoption


• Must limit disruption to existing code and practices



Existing approaches

• Intel Persistent Collections for Java


• Off-heap persistence, Persistent types


• Espresso: persistent new


• AutoPersist: persistence by reachability


• PJama (c.1999) and related



AutoPersist: persistence by 
reachability

• Shull, Huang and Torrellas (3 papers so far)  
PLDI: https://doi.org/10.1145/3314221.3314608


• Split the heap into persistent and volatile parts, transparently to the application


• Label some statics with @durable_root annotation


• When an object becomes reachable from a persistent root, move it to the persistent 
heap


• Forwarder left behind, cleared at next GC


• Add per-thread failure-atomic regions


• Write-ahead undo logging 


• Heuristics to determine when to allocate in persistent heap 



Persistence by reachability: 
is it a good thing?

• Reachability is a non-local property


• A single assignment can cause arbitrary data to become or 
cease to be reachable


• Newly reachable data has to be durable by the end of the 
enclosing transaction: could result in a long pause


• Unreachable live data should eventually be moved to DRAM


• Some objects should not/cannot be persisted


• Could result in persistent memory leaks



Partitioned heaps 
(following NVM-Direct)

• Partition the heap into volatile and persistent regions, 
visible to the programmer. 


• Persistent regions are mapped from DAX files.


• Each object is allocated in a specific region.  


• Disallow cross-region references, except from volatile 
regions.


• When main begins, there is a single volatile region.
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The current region

• Each thread has a notion of the current region — all 
allocations by the thread are in the current region.


• The current region can be changed. Code can be 
wrapped to use a specific region, e.g.:


myRegion.run(() -> {h = new HashMap();});



Checkpoints

• The program can invoke a checkpoint primitive which 
snapshots the current state of one or more regions


• At re-attach, a region is recovered to the last checkpoint


• Regions can be checkpointed independently or together. 
Example: checkpoint a log after every addition, the DB 
less frequently



Epochs
• Each region goes through a series of epochs. An epoch is the 

period between two checkpoints (or before the first). 
 

• A checkpoint freezes the state of the region within that epoch. 
The data within an old epoch are immutable.


• When an object is modified for the first time within the current 
epoch, a copy is made in NVM. All subsequent modifications 
within the current epoch are to this copy.


• The running program can only observe the most recent version 
of an object.
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Recovery

• When a warm start occurs, and the latest epoch is 
uncommitted, recovery takes place.


• Recovery discards the current, uncommitted epoch and 
reverts to the state at the end of the previous epoch.


• Locks held on objects in the region are re-initialized.



Managing checkpoints
• Each checkpoint persists until explicitly discarded.


• If the oldest checkpoint is deleted, objects in that 
checkpoint without modified copies in the next epoch are 
absorbed into the next epoch. If an object is superseded 
by a copy in the next epoch, it can be discarded.


• An intermediate-age checkpoint can also be deleted, 
merging the two epochs around it.


• We can also recover to any checkpoint, discarding all the 
later epochs.



The programmer’s burden
To convert an existing application to use NVM, the 
programmer:


• Partitions the heap into DRAM and NVM regions


• Adds the region creation and loading logic, 


• Wraps NVM object creations in 
Region.run(Runnable).


• Adds calls to checkpoint() at places where the 
region is consistent.



public class PhoneDirectory { 

  static HashMap<String, String> dir; 

  public static void main(String[] args) { 
    … 
  } 

}

Example: simple phone directory  
(following an example by Eliot Moss)



static HashMap<String, String> dir; 
… 
Inside main():


Region<HashMap<String, String>> region;  

try { 
  region = Region.attachOrCreate(“phonedir.region", 
             () -> { return new HashMap<String, String>(); }); 
} catch (InvalidRegionFileException |  
         ClassCastException | IOException ex) { 
  System.err.println(“Region error"); 
  System.exit(1); 
} 

dir = region.root();



Further along in main():


// command received to add an entry for name and number 
… 
addEntry(name, number);



 
private void addEntry(String name, String number) 
  throws PDException  
{ 
  if (dir.containsKey(name)) { 
    throw new PDException("name already in directory"); 
  } 
  dir.put(name, number); 
  
}

Without persistence



 
private void addEntry(String name, String number) 
  throws PDException  
{ 
  if (dir.containsKey(name)) { 
    throw new PDException("name already in directory"); 
  } 
  region.run(() -> dir.put(name, number)); 
  region.checkpoint(); 
}

Region management added - but there’s a bug



 
private void addEntry(String name, String number) 
  throws PDException  
{ 
  if (dir.containsKey(name)) { 
    throw new PDException("name already in directory"); 
  } 
  region.run(() -> dir.put(new String(name),  
                           new String(number))); 
  region.checkpoint(); 
}



 
private void addEntry(String name, String number) 
  throws PDException  
{ 
  if (dir.containsKey(name)) { 
    throw new PDException("name already in directory"); 
  } 
  region.run(() -> dir.put(new String(name),  
                           new String(number))); 
  region.checkpoint(); 
}

• The String parameters must be copied to the region.



 
private void addEntry(String name, String number) 
  throws PDException  
{ 
  if (dir.containsKey(name)) { 
    throw new PDException("name already in directory"); 
  } 
  region.run(() -> dir.put(new String(name),  
                           new String(number))); 
  region.checkpoint(); 
}

• The String parameters must be copied to the region.

• For immutable data, the JVM could do this automatically.



Using partitioned heaps

• Inherently volatile objects reside in a volatile partition


• Their classes are annotated, so that they are never 
created in persistent partitions (e.g., threads)


• Or, add behavior to be invoked at attach to recreate 
state (e.g., files)


• Inter-region references can be handled like this too.



Implicit checkpoints

• main() is the only transaction


• return 0 is commit (checkpoint), non-zero is abort


• Attached regions specified by config info, not code


• Viable iff startup is very fast


• Simple!



Implementation 
sketch



Assumptions, requirements 
and desiderata

• A region can be loaded anywhere (although it may be possible to have it 
commonly re-loaded at the same address). Hence it must be position-
independent, or cheaply (and preferably incrementally) relocatable.


• We’d like checkpoints to be fast, so they can be used relatively often


• We’d like checkpoints of small regions to be even faster


• Steady-state performance of long-running programs is paramount


• Crashes and recovery are infrequent


• NB: NVM is much cheaper than DRAM, so we can trade space for time
—but caches won’t get bigger or cheaper because of NVM.



The heap structure of a 
region

Object table Epoch n n+2n+1 current

• An object ID is a reference to an Object Table Entry (OTE)


• Self-relative when in the heap


• The OT references the most recent version of an object.


• Each version references the next oldest from its header 
(reserved header space).
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Some details

• Write-protect old epochs to catch updates; trap makes a 
copy in the current epoch.


• Need a store barrier to check for cross-region stores.


• A region is actually chunked; each chunk obeys 
alignment restrictions. Regions have a unique ID in the 
chunk header. DRAM regions have ID=0.



Research questions

1. Is this a useful model? When is it not usable? What kinds 
of mistakes are made, and what is the mitigation?


2. Which libraries and apps need to be changed? How do 
we find them?


3. Make it work; make it fast. How fast? 


• Peak performance, checkpoint latency



Some other research 
topics



The time horizon

• Short-term:


• Must address existing languages, software, practices


• Long-term:


• What is the best way to construct persistent 
software?



VM topics
• GC at Terabyte scale and beyond


• Largest CascadeLake machine has 24TB of PM, 6TB of 
DRAM. Does GC scale to this? 


• Caching compiled code — what?  how?  When to 
recompile?


• How to make transactions efficient in your favorite language/
runtime


• Optane puts wear leveling in the DIMM. Could you do better 
having it managed by the OS/VM?



VM implementation-independent, 
modular object and heap layout

• For heaps to be portable across VMs for the same 
language


• For a VM to be able to support multiple formats 
simultaneously



How to backup a live heap

• Can it be done independently of the application?


• Piggy-backed on GC?



What are the implications of 
self-relative data?

• Should there be hardware support? (addressing modes, 
instructions, …)


• Language support in an unmanaged language?  (NVM-
Direct)



Dynamic software update 
and schema evolution

• Most languages haven’t been addressed


• What if you don’t have source code?  (ie binary patch)


• Multiple versions co-resident?


• UpgradeJ



Security

• How to minimize the attack surface of persistent 
memory?


• How to detect tampering?


