
Starting with Semantics
Sylvan Clebsch

Microsoft Research, Cambridge

PLISS 2019



How does a computer work?

• How does a CPU work? μop decoding? Pipelining? Speculative 
execution? Branch prediction? Register renaming?

• How does memory work? Cache coherency? Prefetching? Virtual to 
physical address translation? Content-addressable memory?

• How does I/O work? PCIe? Programmed I/O? Direct memory access?



It’s a trick question

• Those details are specific to a particular type of computer

• CPU details like this are called microarchitecture, as opposed to the 
interface visible to the programmer, which is the architecture

• Both systems programmers and compilers for systems languages need 
to understand the architectural and microarchitectural details

• But what does the systems language itself understand? What 
machine does the language (as opposed to the compiled code) 
interact with?



Abstract machines

• An abstract machine is a theoretical model of a computer, expressed 
as step-by-step execution with architectural details omitted

• Abstract machines may be simplified or detailed, and may be implicit 
or explicit

• A Turing machine is a simple, explicit abstract machine

• The CLR and JVM are detailed, explicit abstract machines – one way to 
think about process virtual machines is as executable abstract 
machines

• C operates over a detailed, implicit abstract machine



Languages and abstract machines

• A programming language describes the steps to take on an abstract 
machine

• This is true even for non-imperative languages

• Example: the Warren Abstract Machine (WAM) for Prolog

• Example: SECD (stack-environment-control-dump) for strict functional 
languages



Semantics describe the interface

• There are many ways to describe how a programming language 
specifies the steps to take on an abstract machine

• The most popular is to write an interpreter or compiler with no 
specification

• Other approaches include axiomatic semantics, denotational 
semantics, and operational semantics

• We’ll use operational semantics, but for no reason other than 
personal preference



Operational semantics

• Big-step operational semantics is a divide-and-conquer approach to 
calculating the final result of a program – doesn’t handle concurrency

• Small-step operational semantics describes a set of transitions, each 
expressed as an inference rule, that can be applied non-
deterministically

• We’ll use small-step operational semantics, but each has their 
purpose



Starting with syntax

• Many programming language designs start with syntax

• In some cases, this is because there is no attempt to intentionally 
design a semantics – perhaps the semantics was assumed
• C, Perl, Python, Ruby, R, et al

• In some cases, this is because there is an existing semantics that is 
intentionally targeted
• C++, F#, Scala, TypeScript, et al

• These are important and useful approaches!



Starting with the syntax makes sense

• Languages are user interfaces

• Allows the designer to focus on expressiveness, change the paradigm 
(e.g. functional-first on an existing abstract machine), address 
software engineering issues (modularity, reuse, etc.), and so much 
more



Why start with semantics?

• New hardware, e.g. shader languages on GPUs, targeting FPGAs

• New communications mechanisms, e.g. distributed programming 
languages, distributed transaction processing

• New runtime feature, e.g. garbage collection, hot code loading

• New deployment requirements, e.g. cross-platform, embedded 
devices

• New application domains, e.g. machine learning, reproducible science

• Evolving concrete machine, e.g. non-uniform memory access, non-
volatile memory



Why start with semantics? Part 2!

• Safe languages are designed to mitigate specific security flaws

• Mitigations for languages not designed for them are sometimes 
possible, and sometimes not cripplingly expensive

• Another route is to design a safe semantics, where safe is always 
relative to some threat model

• Any language executing with that semantics is then safe, until we 
figure out what we left out of the threat model



Starting with semantics is harder

• You need to define the abstract machine

• Then you need to define the semantics (interface of language to 
abstract machine)

• You will still need a syntax

• That syntax will need to target a new and untested semantics

• We can talk about strategies to cope with this later



Let’s build a semantics

• If this is stuff you already know and you want to go faster, please say 
so

• If this is stuff you don’t feel well grounded in and you want to go 
slower, please say so

• If you have ideas for how to express things differently, or about 
something else you’d like to express, please say so



A-normal form

• The operational semantics doesn’t have to be a syntax-driven 
interpreter

• It can be an intermediate representation between the language and 
the abstract machine

• Some helpful IR elements are things like single static assignment 
(SSA), expression holes, continuation passing style (CPS), and A-
normal form (ANF)

• We’ll use ANF: we let-bind non-trivial expressions – that is, we use a 
lot of local variables





























A simple sequential semantics

• We can extend this with function calls, turning the frame into a stack 
of frames

• And add a heap, and allocation on the heap

• We can add manual free, or reference counting, or a non-
deterministic garbage collector

• We can extend values to include addresses on the heap

• And add structured data with fields

• And extend that structured data with methods, dynamic dispatch, 
and dynamic type information (objects)



More complex sequential semantics?

• Tail call optimisation is just that – an implementation optimisation 
over the stack semantics

• Pattern matching, higher order functions, and call-by-need (lazy 
evaluation) can be expressed in terms of the simple sequential 
semantics

• So can multiple-dispatch, logic programming, exception handling, and 
more



System level sequential semantics

• Vectorisation (SIMD) and non-strict floating-point maths are relatively 
straight-forward extensions

• Interrupt handling and dynamic linkage are tricky, and system specific, 
such that finding the right abstract machine representation is hard

• Interrupt handling is not parallel, but it is asynchronous



A parallel semantics

• The standard abstract machine is a parallel random-access machine 
(PRAM)

• Add multiple stacks (i.e. threads) and non-deterministically select 
which stack to execute next

• Keep a single shared heap

• Add a collection of atomic operations, expressed as inference rules 
that complete the operation in a single small-step

• Small-step operational semantics expresses concurrency by using 
non-determinism to model parallelism











Memory ordering

• This approach results in a semantics for parallelism that is 
sequentially consistent – all reads and writes from all threads are 
locally in-order and globally interleaved in some total order

• There are many forms of more relaxed memory ordering on real 
CPUs, which are critical for performance – weak memory semantics is 
an active research area

• Even without relaxed memory orderings, concurrency in the PRAM 
model allows concurrent mutation (data races)



A use case for starting with semantics

• We can express an operational semantics that has mutation, is 
parallel, is efficiently implementable, but has no concurrent mutation

• This is an example of the abstract machine allowing less than the 
concrete machine

• Restricting the abstract machine can improve reasoning, safety, and 
performance

• The implicit C abstract machine, for example, has a flat, 
undifferentiated address space – restricting this is an active research 
area



Why remove concurrent mutation?

• Very roughly speaking, the top safety issues in systems programming 
languages, in order:
• Spatial memory safety

• Temporal memory safety

• Data races

• If concurrent mutation isn’t necessary for your problem domain, 
removing it can improve safety and performance

• There are many approaches, from transactional memory to linear 
types – this is just a point in the design space



Building a PRAM without data-races

• In the PRAM model, there is a single shared heap

• We can instead associate a heap with each thread

• This eliminates data-races completely – each thread can only read or 
write its own heap and its own stack

• It also removes the only cross-thread communication mechanism, 
which was observing concurrent mutation in the heap



Adding data-race free communication

• We can associate a mailbox with each thread

• The mailbox can allow concurrent push but only allow the associated 
thread to pop – a multi-producer single-consumer (MPSC) queue

• If mailbox messages must be primitive values, we have data-race free 
communication

• But we want safe, efficient communication of structured data, 
including entire object graphs



Object messaging without data-races

• We could prevent the receiving thread from making progress and 
copy the message graph into the receiving heap – slow but effective 
(Erlang)

• We can ensure that the message graph does not reach any object 
reachable by the sending thread

• This is a form of separation logic – safe and fast messaging, but only if 
the reachability test is cheap



Simple separation logic encoded in semantics

• Use a single heap, segmented into regions, where every object 
belongs to one region and is reachable only from that region

• Allow objects in some region r to reference some other region r’ but 
not the objects within r’

• Reference count regions

• Messages may then contain only regions with a zero reference count, 
and never object references

• This allows moving a region from one thread to another but not 
sharing a region, preventing concurrent mutation



Weakening the semantics

• This simple encoding of separation logic can be drastically improved, 
including by moving some elements from the dynamic domain 
(operational semantics) to the static (type checking)

• This can be allowed in the operational semantics by not specifying the 
way separation is enforced

• Instead, inference rules can have complex preconditions that may be 
enforced statically rather than dynamically



Another use case: memory constrained ML

• The other ML: machine learning

• Specifying vector operations needed for efficient ML is simple

• Less simple is scheduling parallel pipeline stage executions in a 
constrained memory environment

• Particularly for ML pipelines that are dynamically data dependent: 
recursive, looping, etc.



Key takeaways

• Starting with semantics means building a language to do something 
different rather than building a language to do something better

• Detailed, explicit small-step operational semantics are surprisingly 
easy to get right if they are there from the beginning

• A new semantics can free you from problems arising from your 
abstract machine that are due to features you don’t need for your 
problem domain


