
In search of …



verifiable…

"2



verifiable…

"2

✘



verified…

"3



on-the-fly…

"4



Concurrent Garbage Collectors

"5



..on modern processors

"6



Tony Hosking

In search of verified on-the-fly 
Concurrent Garbage Collection 
on modern processors

"7



Terminology
• The heap is a contiguous array of memory 

words or a set of discontiguous blocks of 
contiguous words 

• A cell is a contiguous group of words that 
may be allocated or free, or wasted or 
unusable

"8



Terminology

• An object is a cell allocated for use by the application, divided into fields 
• A reference is either a pointer to a heap object or the distinguished value 
null 

• A field may contain a reference or some other scalar non-reference value 
• Program roots are the local/global variables of a program that hold 

references

"9

Roots
referencereference

object

fields

object



Terminology
• The mutator executes application code, which allocates 

new objects and mutates references by modifying fields 
and roots 

• Thus, objects can become disconnected from the roots, 
and become unreachable 

• The collector executes garbage collection code, which 
discovers unreachable objects and frees them, allowing 
their storage to be reallocated

"10



Example
type Cell = record
value: int;

next: ref Cell;
end;

var a, b: ref Cell := null;
a := new Cell(0, null);

b := new Cell(1, null);
a.next := b;
b.next := new Cell(2, null);

a := null;

"11

Roots

nulla

nullb

Mutator



Example
type Cell = record
value: int;

next: ref Cell;
end;

var a, b: ref Cell := null;
a := new Cell(0, null);

b := new Cell(1, null);
a.next := b;
b.next := new Cell(2, null);

a := null;

"12

Roots

a

b

0

null

Mutator



Example
type Cell = record
value: int;

next: ref Cell;
end;

var a, b: ref Cell := null;
a := new Cell(0, null);

b := new Cell(1, null);
a.next := b;
b.next := new Cell(2, null);

a := null;

"13

Roots

a

b

0

null

1

null

Mutator



Example
type Cell = record
value: int;

next: ref Cell;
end;

var a, b: ref Cell := null;
a := new Cell(0, null);

b := new Cell(1, null);
a.next := b;
b.next := new Cell(2, null);

a := null;

"14

Roots

a

b

0

1

null

Mutator



Example
type Cell = record
value: int;

next: ref Cell;
end;

var a, b: ref Cell := null;
a := new Cell(0, null);

b := new Cell(1, null);
a.next := b;
b.next := new Cell(2, null);

a := null;

"15

Roots

a

b

0

1

Mutator

2

null



Example
type Cell = record
value: int;

next: ref Cell;
end;

var a, b: ref Cell := null;
a := new Cell(0, null);

b := new Cell(1, null);
a.next := b;
b.next := new Cell(2, null);

a := null;

"16

Roots

nulla

b

0

1

Mutator

2

null



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"17

Roots

nulla

b

0

1

Collector: tri-colour marking

2

null



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"18

Roots

b

0

1

Collector: tri-colour marking

2

null

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"19

Roots

b

0

1

Collector: tri-colour marking

2

null

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"20

Roots

b

0

1

Collector: tri-colour marking

2

null

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"21

Roots

b

0

1

Collector: tri-colour marking

2

null

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"22

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"23

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"24

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"25

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"26

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"27

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"28

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"29

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



b

nulla

Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"30

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"31

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"32

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"33

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"34

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"35

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"36

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"37

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"38

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"39

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"40

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"41

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"42

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

"43

Roots
0

1

Collector: tri-colour marking

2

null

b

nulla



Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"44

Roots
0

1

Collector: sweeping

2

null

b

nulla



Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"45

Roots
0

1

Collector: sweeping

2

null

b

nulla



Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"46

Roots
0

1

Collector: sweeping

2

null

b

nulla



Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"47

Roots

1

Collector: sweeping

2

null

b

nulla



Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"48

Roots

1

Collector: sweeping

2

null

b

nulla



Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"49

Roots

1

Collector: sweeping

2

null

b

nulla



Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"50

Roots

1

Collector: sweeping

2

null

b

nulla



1

Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"51

Roots

Collector: sweeping

2

null

b

nulla



1

Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"52

Roots

Collector: sweeping

2

null

b

nulla



1

Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"53

Roots

Collector: sweeping

2

null

b

nulla



1

Example
for each cell in Heap
if isWhite(cell)

free(cell)
else

setWhite(cell)

"54

Roots

Collector: sweeping

2

null

b

nulla



Correctness Properties
Safety: 

The collector never reclaims live objects. 
More feasibly: the collector never reclaims 
reachable objects. 

Liveness: 
The collector eventually completes is collection 
cycle.

"55



Safety Invariants
for each field in Roots
root := *field
if root ≠ null && isWhite(root)
setGrey(root)
mark()

mark():
while ∃ source in Grey

for each field in Pointers(source)
dest := *field
if dest ≠ null && isWhite(dest)
setGrey(dest)

setBlack(source)

At the end of each iteration 
of the mark loop there are 
no references from black 
to white objects. 
Thus, any reachable white 
object must be reachable 
from a grey object. 
Thus, all reachable white 
objects will eventually be 
marked.

"56



INCREMENTAL AND CONCURRENT 
COLLECTION

"57



Pauses

The duration of the collection cycle is proportional to the number 
of marked objects: 
• users may notice pauses in interactive applications 
• transactions may time out forcing retry 
• real-time tasks may miss deadlines 
One way to reduce pauses is to use incremental or concurrent 
collection.

"58



Uniprocessor incremental collection

Collector interleaves with mutator at defined 
safe points such as allocation sites

"59



Multiprocessor incremental collection

Collector interleaves with mutator threads

"60



Parallel incremental collection

Collector threads interleave with mutator 
threads

"61



Mostly-concurrent collection

"62

Mutator threads pause together briefly at the 
beginning of each collection cycle, then run 
concurrently with the collector



Mostly-concurrent incremental collection

"63

Mutator threads pause together briefly at the 
beginning of each collection cycle, then 
interleave with the collector



On-the-fly collection

"64

No stopping-the-world: mutator threads 
separately synchronize with the collector at 
the beginning of each collection cycle, then 
run concurrently with the collector



On-the-fly incremental collection

"65

No stopping-the-world: mutator threads 
separately synchronize with the collector at 
the beginning of each collection cycle, then 
interleave with the collector



What can go wrong for concurrent GC?
• It’s OK for the mutator to modify objects ahead 

of the wavefront (grey or reachable white 
objects) whose fields are still to be scanned 

• It’s not OK for the mutator to insert a white 
pointer into a black object without letting the 
collector know

"66



The lost object problem
Condition 1: the mutator stores a pointer to 
a white object into a black object; and 
Condition 2: all paths from any grey objects 
to that white object are destroyed

"67



Example 1: direct

"68

Roots

Hiding a reachable white object by dropping a direct link from grey



Example 1: direct

"68

Roots

Hiding a reachable white object by dropping a direct link from grey



Example 1: direct

"68

Roots

Hiding a reachable white object by dropping a direct link from grey



Example 1: direct

"68

Roots

Hiding a reachable white object by dropping a direct link from grey



Example 1: direct

"68

Roots

Hiding a reachable white object by dropping a direct link from grey



Example 1: direct

"68

Roots

Hiding a reachable white object by dropping a direct link from grey



Example 1: direct

"68

Roots

Hiding a reachable white object by dropping a direct link from grey

✘



Example 2: indirect

"69

Roots

Hiding a transitively reachable white object by breaking an indirect chain from grey



Example 2: indirect

"69

Roots

Hiding a transitively reachable white object by breaking an indirect chain from grey



Example 2: indirect

"69

Roots

Hiding a transitively reachable white object by breaking an indirect chain from grey



Example 2: indirect

"69

Roots

Hiding a transitively reachable white object by breaking an indirect chain from grey



Example 2: indirect

"69

Roots

Hiding a transitively reachable white object by breaking an indirect chain from grey



Example 2: indirect

"69

Roots

Hiding a transitively reachable white object by breaking an indirect chain from grey



Example 2: indirect

"69

Roots

Hiding a transitively reachable white object by breaking an indirect chain from grey

✘



The strong tricolor invariant
Preventing Condition 1: 
Ensure there are no pointers from black 
objects to white objects

"70



Retreat the wavefront: grey the source 
Mutator is allowed to have white roots

Insertion barrier [Steele]

"71

Roots



Retreat the wavefront: grey the source 
Mutator is allowed to have white roots

Insertion barrier [Steele]

"71

Roots



Retreat the wavefront: grey the source 
Mutator is allowed to have white roots

Insertion barrier [Steele]

"71

Roots



Retreat the wavefront: grey the source 
Mutator is allowed to have white roots

Insertion barrier [Steele]

"71

Roots



Retreat the wavefront: grey the source 
Mutator is allowed to have white roots

Insertion barrier [Steele]

"71

Roots



Retreat the wavefront: grey the source 
Mutator is allowed to have white roots

Insertion barrier [Steele]

"71

Roots



Retreat the wavefront: grey the source 
Mutator is allowed to have white roots

Insertion barrier [Steele]

"71

Roots

✔



Advance the wavefront: shade the target 
Mutator is allowed to have white roots

Insertion barrier [Dijkstra]

"72

Roots



Advance the wavefront: shade the target 
Mutator is allowed to have white roots

Insertion barrier [Dijkstra]

"72

Roots



Advance the wavefront: shade the target 
Mutator is allowed to have white roots

Insertion barrier [Dijkstra]

"72

Roots



Advance the wavefront: shade the target 
Mutator is allowed to have white roots

Insertion barrier [Dijkstra]

"72

Roots



Advance the wavefront: shade the target 
Mutator is allowed to have white roots

Insertion barrier [Dijkstra]

"72

Roots



Advance the wavefront: shade the target 
Mutator is allowed to have white roots

Insertion barrier [Dijkstra]

"72

Roots



Advance the wavefront: shade the target 
Mutator is allowed to have white roots

Insertion barrier [Dijkstra]

"72

Roots

✔



The weak tricolor invariant
Preventing Condition 1: 
Every white object pointed to by a black 
object must be grey protected: that is, 
reachable from some grey object directly or 
indirectly via a chain of white objects

"73



Advance the wavefront: shade the target on load 
Mutator is prevented from holding white roots

Read barrier [Baker]

"74

Roots



Advance the wavefront: shade the target on load 
Mutator is prevented from holding white roots

Read barrier [Baker]

"74

Roots



Advance the wavefront: shade the target on load 
Mutator is prevented from holding white roots

Read barrier [Baker]

"74

Roots



Advance the wavefront: shade the target on load 
Mutator is prevented from holding white roots

Read barrier [Baker]

"74

Roots



Advance the wavefront: shade the target on load 
Mutator is prevented from holding white roots

Read barrier [Baker]

"74

Roots



Advance the wavefront: shade the target on load 
Mutator is prevented from holding white roots

Read barrier [Baker]

"74

Roots

✔



Deletion barrier [Abraham & Patel; Yuasa]

"75

Roots

Advance the wavefront: shade the deleted target 
Weak invariant allows mutator to hold white roots



Deletion barrier [Abraham & Patel; Yuasa]

"75

Roots

Advance the wavefront: shade the deleted target 
Weak invariant allows mutator to hold white roots



Deletion barrier [Abraham & Patel; Yuasa]

"75

Roots

Advance the wavefront: shade the deleted target 
Weak invariant allows mutator to hold white roots



Deletion barrier [Abraham & Patel; Yuasa]

"75

Roots

Advance the wavefront: shade the deleted target 
Weak invariant allows mutator to hold white roots



Deletion barrier [Abraham & Patel; Yuasa]

"75

Roots

Advance the wavefront: shade the deleted target 
Weak invariant allows mutator to hold white roots



Deletion barrier [Abraham & Patel; Yuasa]

"75

Roots

Advance the wavefront: shade the deleted target 
Weak invariant allows mutator to hold white roots



Deletion barrier [Abraham & Patel; Yuasa]

"75

Roots

Advance the wavefront: shade the deleted target 
Weak invariant allows mutator to hold white roots

✔



Termination
Eventually all live objects are black 
• Marking only adds to the wavefront 
• Mutator barriers only add to the wavefront 
• Allocating black speeds termination 
• Deletion barrier avoids need to re-scan mutator roots 

• mutator can safely acquire white roots after snapshot 
• otherwise, must repeat marking from mutator roots until no 

white roots remain

"76



Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



✘

Allocating black

"77

Roots

Deletion barrier is insufficient when allocating black.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.



Allocating white

"78

Roots

Deletion barrier suffices when allocating white.

✔



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.



Allocating grey

"79

Roots

Deletion barrier suffices when allocating white/grey.

✔



Safety
Arguments about safety of on-the-fly collectors trade on 
the weak or strong tricolor invariants enforced by the 
barriers. 
BUT… 
Can we really believe these arguments for real? 
Can we prove safety for an efficient production algorithm 
that uses lightweight synchronization on x86 relaxed 
memory?

"80



PROVING SAFETY
Segue from PLDI’10 to PLDI’15 and beyond

"81



The bones of Schism: CMR [PLDI’10]
Concurrent mark-region GC 
• Concurrent 
• On-the-fly 
• Wait-free constant-time heap access 
• Mark-region allocator (linear-time for small objects or 

no fragmentation) 
• Good throughput

"82



CMR data structures
• o.flag field indicates if object o is marked 
• o.next field is used to log o to a worklist 
• o.len field object o is marked 
• W is the collector worklist 
• W[t] is a private worklist for mutator t

"83



Mutator primitives
• Read(o,i): load slot i from object o 
• Write(o,i,v): store v into slot i of o 
• Alloc(n,v): return a reference to a new 

object having n fields initialized to v 
• Collector-mutator handshakes in between, 

never in the middle
"84



CMR Write
Write(o,i,v): 
w := o[i] 
mark(w,W[self]) 
mark(v,W[self]) 
o[i] := v

"85



CMR Alloc
Alloc(n,v): 
o := allocRaw(n) 
o.flag := fA 
o.next := null 
o.len := n 
for each l in Refs(o) 
*l := v 

return o

"86



CMR Collector

"87

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

Idle: no markingloop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

Init: Store marks

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

Mark: Store & 
Alloc mark

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

Sweep: Alloc marks

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Collector

"87

loop 
phase ← Idle 
handshake t in T nop 
fM ← !fM 
handshake t in T nop 
phase ← Init 
handshake t in T nop 
phase ← Mark 
fA ← fM 
handshake t in T nop 
handshake t in T 

for each l in Roots(t) 
mark(*l, W[t]) 

atomic transfer(W[t], W) 

while W.head ≠ null 
while W.head ≠ null 

s ← dequeue(W) 
shadeBlock(s,s.len) 
for each l in Refs(s) 

mark(*l, W) 
handshake t in T 

atomic transfer(W[t], 
W) 

phase ← Sweep 
sweepBlocksAndLines()



CMR Mark
mark(o,W): 
if o.flag ≠ fM 
if phase ≠ Idle 
if CAS(&o.flag, !fM → fM) = !fM 
o.next := W.head 
if W.tail = null 
W.tail := o 

W.head := o

"88



CMR Transfer
transfer(W1, W2): 
if W1.head ≠ null 
W1.tail.next := W2.head 
W2.head := W1.head 
W1.head := null 
W1.tail := null

"89



CMR Dequeue
dequeue(W): 
o ← W.head 
if o = null 
return null 

W.head ← o.next 
if W.tail = o 
W.tail = null 

return o

"90



Relaxing Safely: Verified On-the-Fly
Garbage Collection for x86-TSO

Peter Gammie1 Tony Hosking2 Kai Engelhardt3

1ex NICTA Australia

2Purdue University while on leave at NICTA

3UNSW and NICTA Australia

1/18



Tony’s Goal

Verify a highly concurrent, on-the-fly garbage collector
wrt a non-sequentially consistent memory model

Our headline result

GC M1 M2 . . .
|= (�r.reachable r ! valid_ref r)

Sys

For Sys ' TSO, there is always an object at every
reference reachable from a mutator root

2/18



Main challenges

… the system is highly concurrent

… memory is not sequentially consistent

… mutators may not be data-race free

… convince λ →

∀
=Isa

be
lle

β
α

HOL

of our proof technique/invariants

3/18



The Schism Garbage Collector
as described at PLDI’10

Concurrent, on-the-fly, mark-sweep
… Does not stop the world

… wait-free for the mutators up to allocation

… Takes a snapshot

… Races with the mutators to mark reachable objects
… Objects are built from cache-line-sized chunks

… representation bakes in GC space overhead

) fragmentation tolerant without relocation

Claim: has predictable real-time performance

4/18

GC M1 M2 . . .

Sys



Folklore: GC requires mutator cooperation

Mutators use write barriers
unless the GC is idle

… the insertion barrier prevents
mutators from hiding references from the collector

… the deletion barrier accelerates termination

Objects are allocated. . .
… white when GC is idle

… minimizes floating garbage

… black when GC is not idle
… accelerates termination

Grey objects track pending GC work

5/18

GC M1 M2 . . .

Sys



Total Store Order (x86-TSO)

x86-TSO has one write queue
per core and consults these
queues for memory reads

Some instructions (CAS) are an atomic sequence
memory operations, so there is also a bus lock

x86-TSO is not sequentially consistent
. . . there can be data races

… The model has been validated against recent
x86 hardware by Peter Sewell et al.

6/18

GC M1 M2 . . .

Sys



Data races

Starting in a state where x = y = 0:

P0 P1
x 1 y 1

MFENCE MFENCE

r1 y r2 x

Can observe r1 = r2 = 0
a data race

MFENCE waits until the core’s TSO buffer is empty

Now cannot observe r1 = r2 = 0

We have sequential consistency!

. . . with significantly degraded performance

7/18



Data races

Starting in a state where x = y = 0:

P0 P1
x 1 y 1
MFENCE MFENCE
r1 y r2 x

Can observe r1 = r2 = 0
a data race

MFENCE waits until the core’s TSO buffer is empty

Now cannot observe r1 = r2 = 0

We have sequential consistency!

. . . with significantly degraded performance

7/18



The promise of many reduction theorems

If there are no data races, then we can use classical
techniques for sequentially consistent memory

Problem: our mutators need not be DRF

Solution: resort to general techniques for concurrency

8/18



So much for the model. . . what about the
assertion?

GC M1 M2 . . .
|= (�r.reachable r ! valid_ref r)

Sys

For Sys ' TSO, there is always an object at every
reference reachable from a mutator root

What does TSO do to reachability?

9/18



So much for the model. . . what about the
assertion?

GC M1 M2 . . .
|= (�r.reachable r ! valid_ref r)

Sys

For Sys ' TSO, there is always an object at every
reference reachable from a mutator root

What does TSO do to reachability?

9/18



So much for the model. . . what about the
assertion?

GC M1 M2 . . .
|= (�r.reachable r ! valid_ref r)

Sys

For Sys ' TSO, there is always an object at every
reference reachable from a mutator root

What does TSO do to reachability?

9/18



TSO and reachability, breathlessly

10/18

Mutator

A B

 
write buffer



TSO and reachability, breathlessly

10/18

A→BMutator

A B

write buffer



TSO and reachability, breathlessly

The pending write is the only witness to B’s reachability

10/18

Mutator

A B

A→B
write buffer



TSO and reachability, breathlessly

. . . but the insertion barrier has already greyed B!

We treat grey and TSO refs as extra mutator roots

. . . and all paths go via the heap

10/18

Mutator

A B

A→B
write buffer



So much for the result. . . how did we express all
that?

GC M1 M2 . . .
|= (�r.reachable r ! valid_ref r)

Sys

For Sys ' TSO, there is always an object at every
reference reachable from a mutator root

“You can’t always write a chord ugly
enough to say what you want to say,
so sometimes you have to rely on a
giraffe filled with whipped cream.”

11/18



The framework: CIMP

… Simple imperative language (IMP) + synchronous
message passing

… Flat, top-level parallel composition.

… Each process has local control and data states

There is no shared global state

… Amenable to state-based invariant reasoning

Enables separation of programs, invariants and proofs

12/18



Constructing the GC invariants

Tony was confident that the GC satisfied the standard
mark/sweep tricolour invariants

. . . but before we made it to those lofty realms, we first:

… Defined a system-wide “program counter” that
encodes the GC’s phase structure

… Exploited DRF where we could, and sliced the
program wrt non-DRF variables when we had to

… Developed fine-grained assertions around the
object marking operations

. . . in higher-order logic λ →

∀
=Isa

be
lle

β
α

HOL

Isabelle’s parallelism for low-latency invariant search!

13/18



Are you advocating this for arbitrary programs?

No
This was about discovering invariants for a
particular non-trivial program on x86-TSO

14/18



Why didn’t you develop or use. . .
… a suitable reduction theorem?

… something compositional, like rely/guarantee?

… separation logic and ownership?

… shared variables and Owicki/Gries?

… communication-closed layers?

… a more abstract model and refinement?

… some other formalism such as I/O automata?

… proof outlines?

… a modelchecker?

… . . . your favoured technique?

Largely because (almost) none of these would
have eased invariant discovery.

15/18



Why didn’t you develop or use. . .
… a suitable reduction theorem?

… something compositional, like rely/guarantee?

… separation logic and ownership?

… shared variables and Owicki/Gries?

… communication-closed layers?

… a more abstract model and refinement?

… some other formalism such as I/O automata?

… proof outlines?

… a modelchecker?

… . . . your favoured technique?

Largely because (almost) none of these would
have eased invariant discovery.

15/18



OK, so where did you cheat?

Minor:

… grey is not subject to TSO

… underlying memory blocks are not modelled

… ragged safepoints are abstract

… each mutator + GC runs on its own core

) We leave these to an atomicity refinement technique.

Major:

… alloc and free are global and atomic.

16/18



Remaining and future work

… A defensible treatment of allocation
… Connection with something more executable

… x86 instruction semantics + refinement

… Recast in a compositional framework
… extra invariants: the heap is not mutilated, . . .

A plausible liveness result may prove elusive.

Come and talk to us if any of that interests you!

17/18



Concluding remarks

… Reasoning about data-racy programs on x86-TSO is
(sometimes) not too bad. . . but that might be
because the collector is carefully constructed

… To scale one certainly wishes to exploit the general
absence of data races

… The x86-TSO model is useful for thinking about
correctness but not performance
… How do we provide analytic WCET bounds for this
putatively real-time collector?

… ARM/POWER are more complex

18/18


